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Abstract

In [1] the Lie-algebraic method was used to develop generalized Courant-Snyder invariant in the presence of

an arbitrary number of beam-beam collisions, head-on or long-range, in a storage ring collider. Each beam-beam

collision point is described by a set of Fourier coefficients, computed numerically. This note presents analytic

expressions for these coefficients.

PACS numbers:
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I. INTRODUCTION

The long-range beam-beam Hamiltonian divided by Nbr0
γ

can be written as:

H =

∫ P

0

(1− e−α)
dα

α
= (1)

= γ + Γ0(P ) + ln(P ), (2)

where

P = P (x) ≡ 1

2

(
(nx +

x

σ
)2 + n2

y

)
. (3)

Here x is the particle coordinate; dx the real space offset of the collision point in x direction and similar

for y direction. Also nx,y = dx,y/σ are the normalized offsets. Also σ =
√
εβ with β being the beta

function and ε the emittance.

In [1], we used the form (2) to calculate numerically the coefficients cm (m=integer) in the Fourier

expansion of H. Our goal here is to derive analytical expressions for these coefficients. For this we use

the form (1), i.e. we follow the approach in [2], where the same is done for the case of head-on collisions

(nx = ny = 0). Not surprisingly, the result is that cm can be written as series of Bessel-I functions. In

the case of nx = ny = 0 these reduce to the single Bessel-I function of [2],

II. SOME PROPERTIES OF H

H can be written in terms of several mutually related special functions – Appendix A.

In the form (2), Γs(P ) ≡ Γ(s, P ) denotes the upper incomplete gamma function – see Abramowitz-

Stegun.

The form (1) is identical to the usual definition of Ein(P ). Further, Ein(z) is related to the expo-

nential integral E1(z), so one may also write:

H = Ein(P ) = γ + lnP + E1(P ).

From (2), we have the relations:

∂H

∂P
=

1

P
− e−P

P
(4)

and

∂P

∂x
=

1

σ2
(x+ nxσ), (5)
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so that the long-range beam-beam kick is:

f(x) ≡ d

dx
H(x) =

∂H

∂P

dP

dx
=

=
2(x+ nxσ)

(x+ nxσ)2 + (nyσ)2

(
1− e−

(x+nxσ)2+(nyσ)2

2σ2

)
.

The nonlinear part of the Hamiltonian is H −H(1) −H(2), where H(1) ∼ x and H2 ∼ x2. The linear in

x part of H is

H(1) =

(
∂H(x, σ)

∂x

)
|x=0 x =

=
2nx

σ(n2
x + n2

y)

(
1− e−

n2
x+n2

y
2

)
x. (6)

The non-linear in x part of H, i.e. closed orbit subtracted is

Hnon = H −H(1). (7)

Further, an alternative way to write the integral is (by taking α = tP in (1)):

H =

∫ P

0

(1− e−α)
dα

α
=

=

∫ 1

0

(1− e−tP )
dt

t
. (8)

III. ACTION-ANGLE VARIABLES

For simplicity, let’s assume that there is no offset in the orthogonal plane, i.e. ny = 0. All expressions

we get can easily be modified to account for ny 6= 0. In addition, we know that its effect is small.

Introduce action angle variables as in [2]

x =
√

2Aβ sinφ =

=
√

2A/ε σ sinφ =

= nσ σ sinφ, (9)

Here

nσ =
√

2A/ε =
√

2Aβ/σ2. (10)

With our simplifying assumption ny = 0, from (3) we have:

P =
1

2
(nx +

x

σ
)2 =

1

2
(nx + nσ sinφ)2 (11)
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and corresponding H defined by (2) or (8). Also from (6)

H(1) =
2

nx

(
1− e−

n2
x
2

)
nσ sinφ. (12)

We have defined P , H and H(1) as functions of amplitude A and phase φ. The dependence on A

is implicit – through nσ: P (nσ, φ), H(nσ, φ) and H(1)(nσ, φ). The particle amplitude is measured in

number of sigmas nσ wrt the the closed orbit, which orbit is to first order just the the IP offset at this

location, nx sigmas from the axis. Most interesting is the case (dynamic aperture) when both these

quantities are large: nx ∼ 9 and nσ ∼ 7− 10.

IV. FOURIER EXPANSION

The expansion of the Hamiltonian is in the form:

H = c0 +
∑
m6=0

cme
imφ (13)

and we need to compute the Fourier coefficients

cm =
1

2π

∫ 2π

0

e−imφH(n, φ)dφ, m=integer. (14)

Assuming this is done, we can replace H in (13) with Hnon−H(1) which will lead to modification of only

two coefficients: c±1 which can easily be deduced from (12).

A. Direct numerical way

Numerical calculation of cm can be done as in [1]. By taking the second form (2) of H and also P

from (11) and H(1) from (12), we have:

cm =
1

2π

∫ 2π

0

e−imφ
(
γ + Γ0(P ) + ln(P )−H(1)

)
dφ. (15)

cm[m_, nx_, n_] :=

Module[{P, Hnon},

P := (nx^2/2 + n nx Sin[\[Phi]] + 1/2 n^2 Sin[\[Phi]]^2);

Hnon := EulerGamma + Gamma[0, P] + Log[P] -

cosub 2/nx (1 - E^(-(nx^2/2))) n Sin[\[Phi]];

1/(2 \[Pi]) NIntegrate[Exp[-I m \[Phi]] Hnon , {\[Phi], 0, 2 \[Pi]},
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AccuracyGoal -> 8] // Chop];

cosub=1;

m = 1;

nx = 9;

n = 5;

cm[m, nx, n]/I^m

-0.0511155

In this example m = 1, nσ = 5, nx = 9, the closed orbit is subtracted (cosub = 1) and the result is

c1 = −0.0511155 i.

B. Analytical way

Let us take the first form of H (1) , with integration variable t as in (8), and substitute it into (14).

Consider first the expression under the integral over t:

1

2π

∫ 2π

0

e−imφ (1− e−tP (nσ ,φ)))dφ, (16)

We rewrite the exponent factor as

− tP (nσ, φ) = −t
(

1

2
n2
x + nσnx sinφ+

1

2
n2
σ sin2 φ

)
= − t

2
n2
x − tnσnx sinφ− t

2
n2
σ sin2 φ =

= z3 − z1 sinφ+ 2z2 sin2 φ, (17)

with the temporary notations z1 = tnσnx, z2 = − t
4
n2
σ and z3 = − t

2
n2
x. The exponents that appear in

(16) can be expressed through the modified Bessel functions Ik:

e−z1 sinφ =
∞∑

k=−∞

ikeikφIk(z1) = (18)

= I0(z1) + 2
∞∑
k=0

cos k(φ+
π

2
)Ik(z1) (19)

and
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e 2z2 sin2 φ = ez2
∞∑

k=−∞

(−1)ke2ikφIk(z2) = (20)

= ez2

(
I0(z2) + 2

∞∑
k=0

(−1)k cos 2kφ Ik(z2)

)
(21)

The m-th Fourier component of the product of (19) and (21) is

1

2π

∫ 2π

0

e−imφe−z1 sinφe2 z2 sin2 φ =

= ez2
∞∑

q,k=−∞

(−1)kiqIq(z1) Ik(z2) δ(2k + q −m) =

= ez2
∞∑

k=−∞

imIm−2k(z1)Ik(z2). (22)

By using (17) and (22), the expression (16) becomes

1

2π

∫ 2π

0

e−imφ
(
1− e−tP (nσ ,φ)

)
dφ =

= 1− ez3ez2
∞∑

k=−∞

imIm−2k(z1)Ik(z2) =

=

1− ez3ez2
∑∞

k=−∞ I−2k(z1)Ik(z2), if m = 0

−ez3ez2
∑∞

k=−∞ i
mIm−2k(z1)Ik(z2), if m 6= 0.

(23)

The expansion (23) still needs to be divided by t and integrated over t from 0 to 1. Upon replacing zi

with their values it is easy to see that for (23) there will be no singularities at t = 0 (use the asymptotes

of I for small argument). For the m = 0 term we get:

c0 =

∫ 1

0

dt

t

(
1− e−

t
2
n2
xe−

t
4
n2
σ

∞∑
k=−∞

I−2k(tnσnx)Ik(−
t

4
n2
σ)

)
. (24)

This is the averaged H over the unperturbed phase and it can be used to compute the tune shift

−1/(2π)dc0/dA. The formula for nσ is (9). Also, dnσ
dA

= 1
εnσ

.

For cm, with m 6= 0:

cm =

∫ 1

0

dt

t

(
−e−

t
2
n2
xe−

t
4
n2
σ

∞∑
k=−∞

imIm−2k(tnσnx)Ik(−
t

4
n2
σ)

)
=

= −im
∞∑

k=−∞

∫ 1

0

dt

t
e−

t
2
n2
xe−

t
4
n2
σIm−2k(tnσnx)Ik(−

t

4
n2
σ). (25)

shows a Mathematica implementation of the function cm(nσ, nx) in (25), represented by CM[m , nx , n ].

This example uses the same values as for Exhibit1 above and the result is the same.
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CM[m_, nx_, n_] :=

(cosub KroneckerDelta[Abs[m] - 1] (I)^(m) 1/nx (1 - E^(-(nx^2/2))) n -

I^m Sum[NIntegrate[(Exp[-t nx^2/2] Exp[-t/4 n^2] BesselI[m - 2 k,

t n nx] BesselI[k, -t/4 n^2])/t, {t, 0, 1}], {k, -kmax, kmax}])//Chop

kmax=20;

cosub=1;

m = 1;

nx = 9;

n = 5;

CM[m, nx, n]/I^m

-0.0511155

For a collision point without offset, by taking nx = 0 in (25) and using the property of I for zero

argument Im−2k(0) = δm−2k we get:

cm =


∫ 1

0
dt
t

(
1− e− t4n2

σI0(− t
4
n2
σ)
)
, if m=0

−
∫ 1

0
dt
t
e−

t
4
n2
σIm/2(

t
4
n2
σ), if m=even 6=0

0 otherwise.

(26)

From (9) we have n2
σ/4 = Aβ

2σ2 , By using also I0(−z) = I0(z) and (8), we see that this is the same as the

expression given by Chao [2].

[1] D.Kaltchev, W.Herr Analytical calculation of the smear for long-range beam-beam interactions, PAC09 get

paper

[2] A. Chao, Truncated Power Series Algebra, lectures
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V. APPENDIX

Appendix A: H via special-functions

The Hamiltonian expressed through the function γ∗(s, z), see Abramowitz-Stegun:

H(x) = −∂γ
∗

∂s
|s→0 =

∫ ∞
P (x)

e−t

t
dt = γ + Γ0(P ) + ln(P )

P (x) =
1

2

(
(nx +

x

σ
)2 + n2

y

)
.

The Hamiltonian expressed through the exponential integral Ei(x). For real, nonzero values

of x, the exponential integral Ei(x) can be defined as

Ei(x) =

∫ x

−∞
et
dt

t
. (A1)

The integral has to be understood in terms of the Cauchy principal value, due to the singularity in the

integrand at zero. In general, a branch cut is taken on the negative real axis and Ei can be defined

by analytic continuation elsewhere on the complex plane. For complex values of the argument, this

definition becomes ambiguous due to branch points at 0 and∞. In general, a branch cut is taken on the

negative real axis and Ei can be defined by analytic continuation elsewhere on the complex plane. One

uses E1(z) defined as:

E1(z) =

∫ ∞
z

e−t
dt

t
=

∫ ∞
1

(e−tz)
dt

t
=

∫ 1

0

e−z/u
du

u
, Re(z) ≥ 0 (A2)

Both Ei and E1 can be written more simply using the entire function Ein,such that

E1(z) = −γ − lnz + Ein(z). (A3)

The Hamiltonian is H(x) = Ein(P ), where:

Ein(z) =

∫ z

0

(1− e−t)dt
t
, (A4)

or also

Ein(z) = γ + lnz + E1(z) =

= γ + lnz +

∫ ∞
z

e−t
dt

t
=

= γ + lnz +

∫ ∞
1

(e−tz)
dt

t
=

= γ + lnz +

∫ 1

0

e−z/u
du

u
, Re(z)≥ 0. (A5)
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