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Abstract
The Lie-algebraic method is used to develop generalized

Courant-Snyder invariant in the presence of an arbitrary
number of beam-beam collisions, head-on or long-range,
in a storage ring collider. The invariant is obtained by
concatenating nonlinear beam-beam maps in the horizontal
plane and to first order in the beam-beam parameter. Track-
ing evidence is presented to illustrate that with LHC pa-
rameters the invariant is indeed preserved and can be used
to predict the smear of horizontal emittance observed in
tracking simulations. We discuss the limits of applicability
of this model for realistic LHC collision schemes.

INTRODUCTION
The beam-beam interaction, in the weak-strong model,

can be studied with transfer maps. Assuming the weak-
beam particle motion to consist of passages through the
strong beam (collisions) alternating with linear-motion sec-
tions, the ring transfer map is given by the product:

M =
NIP∏
k=1

e:F (k):e:F
(k)
2 : = e:h:,

where NIP is the number of collision points, head-on or
long-range, e:F (k): and e:F

(k)
2 : are Lie operators associated

with a linear matrix and a beam-beam kick respectively
and h is a generalized Courant-Snyder invariant. By using
the properties of Lie operators for F-factors in action-angle
representation it is not difficult to derive an expression for h
to first order of the beam-beam parameter in the horizontal
plane. For multiple head-on interaction points in the LHC
such an expression was reported previously [1],[2], where
also a condition was derived for suppression of resonances.
In this paper we present an invariant h valid for both head-
on and long-range collisions and verify with tracking that
in absence of other lattice perturbations h is indeed pre-
served. We compare the distortion of h with the smear ob-
served in Sixtrack [5] simulations and discuss the limits of
agreement of such a first-order theory with tracking.

For a ring with a single (NIP = 1) head-on collision
point, both the nonresonant and resonant h have been ana-
lyzed by Dragt [3] (see also Chao’s lectures [4]).

INVARIANT FOR MULTIPLE COLLISION
POINTS

Fourier expanded potential
In the LHC, a particle moving in the horizontal plane

sees both horizontal (near IP5) and vertical (near IP1) head-
on and long-range collisions. Assuming round Gaussian

beam profile at all collision points the kick is: ∆x′ = λf ,
where

f(x) =
2(x + dx)

(x + dx)2 + d2
y

exp

[
−

(x + dx)2 + d2
y

2σ2

]
, (1)

λ ≡ Nbr0
γ , Nb is the number of particles per bunch, r0 –

the classical particle radius, γ - the relativistic parameter
and β, σ =

√
εβ, dx,y are the beta function, the transverse

beam size and the transverse separations at the location of
the kick; ε is the emittance.

The beam-beam potential is λF (x) = λ
∫ x

0
f(x′)d x′.

We first transform F (x) to action-angle coordinates (A,φ)
by substituting in it x =

√
2Aσ sinφ and then expand it in

Fourier series. The result is:

F (A,φ) =
∫ 1

0

dt

t

(
1− e

−t

»“√
A sin φ+ d̃x√

2

”2
−

d̃2
y
2

–)
=

=
∑∞

n=−∞ cn(A) einφ , (2)

where d̃x,y ≡ dx,y/σ. The complex coefficients satisfy
c∗n = c−n and will be found numerically 1. If d̃x,y = 0
(head-on collision) then cn are expressed via Bessel func-
tions [4]. In what follows we will also need the linear
(F1 ∼ x) and quadratic (F2 ∼ x2) parts of the potential:

F1 =
2
√

2A sinφ

d̃2
d̃x(1− exp

−d̃2

2
), (3)

F2 =
2A sin2 φ

d̃4
×

×

[
−d̃2

x + d̃2
y + (d̃2

x + d̃4
x − d̃2

y + d̃2
xd̃2

y) exp
−d̃2

2

]
,

where d̃2 ≡ d̃2
x + d̃2

y .

Nonresonant invariant h

Using the Campbell-Baker-Hausdorff formula it can be
shown [1] that the quantity h is given by:

1
µ

h(A,φ) = −A +
NIP∑
k=1

λ(k)

ε
h̃(k); (4)

h̃(k) = c
(k)
0 +

m∑
n=1

(−1)n n

2 sin nµ
2

[
c(k)
n ein( 1

2 µ−µ(k)−φ) + c.c.
]
;

c(k)
n (A) =

1
2π

∫ 2π

0

e−inφ F (k)(A,φ) dφ (n = 0, . . . ,m).

1The integral in (2) can be expressed through the incomplete gamma
function: F (A, φ) = γ + Γ [0, P ] + log P , where P = 1

2
(d̃2

x + d̃2
y) +√

2A d̃x sin φ + A sin2 φ (γ = 0.577216 is the Euler’s constant).



Here h̃(k) is the contribution to the invariant of the k-
th collision point located at betatron phase µ(k), while
µ = 2πQx (Qx is the ring tune). The Lie-factor F (k) is
given by (2) with d̃x,y replaced with d̃

(k)
x,y – normalized sep-

arations at the k-th collision point. The number of Fourier
harmonics taken (m) is adjusted to correspond to nine sig-
nificant figure accuracy. The factors λ(k) allow to model
lumped collisions as in [6], [7] (not used here).

Since the coefficients c
(k)
n (A) only weekly depend on A,

they can be computed only once for, say, the initial (first
turn) value of A. This claim is verified in the next section.
We see then that the contribution of each collision point to
the distortion of phase space at some amplitude is defined
by an unique set of coefficients. This set depends on the
normalized separations at this collision point.

VERIFICATION OF THE INVARIANT

This section presents numerical evidence that h defined
with (4) is indeed preserved for some sample (minimal) set
of long-range collisions in the LHC: 12 long-range inter-
actions at locations with separations 9.4, 8.5, and 5 sigma
positioned symmetrically on both sides of IP5 and IP1.

Comparison with a simple tracking model

The model tracking is based on kicks f (k)(x)− f (k)(0),
where f (k)(x) is as in (1), alternating with unperturbed lin-
ear matrices. The procedure is to iterate an initial condition
(A0, φ0) = (n2

σ

2 , π/2) thus getting a sequence of points
Ai, φi, where i is the turn number, and then compare the
quantities Ai and h(Ai, φi). Figure 1, analogous to one in
[3], shows that h is indeed more constant than the ordinary
Courant-Snyder invariant (−A). The coefficients c

(k)
n (A0)

in (4) are computed from potentials with subtracted linear
term: F (k) − F

(k)
1 .
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Figure 1: Plots of the quantities h/µ (red) and (−A)
(blue) for increasing starting amplitude x = nσσ; nσ =
7, 8, 9, 10. Large variations of (−A) occur for larger initial
betatron amplitude.

To compute smear from the invariant we use the relation
h(A,φ) = h(A0, φ0) and express A as a function of φ. Fig-
ure 2 illustrates that Ai, φi lay on the resultant theoretical
curve A(φ). By covering the curve A(φ) with some dense
equidistant set of points, smear is defined as the r.m.s. de-
viation of the A-values from this set divided by the mean.
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Figure 2: Same as case nσ = 9 on Fig. 1, but a differ-
ent way to show the agreement (as in [1]). Red: theoreti-
cal A(φ) dependence used to define smear. Black: model
tracking.

Comparison with Sixtrack
For comparison with Sixtrack the action is defined via

linearly-perturbed β function and correspondingly c
(k)
n

are computed from potentials with subtracted linear and
quadratic parts: F (k) − F

(k)
1 − F

(k)
2 . See Figure 3. The

agreement is shown on Figure 4.
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Figure 3: Same as case nσ = 9 on Fig. 1, but invariant
computed from linearly perturbed β at the initial point for
tracking. Left: potential used is F − F1. Right: the poten-
tial is F − F1 − F2 (in this case h is more constant).
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Figure 4: Agreement between Lie algebra, tracking model
and Sixtrack for a sample set of long-range collisions in
the LHC. Shown is smear of the horizontal emittance com-
puted over 210 turns as a function of initial x = nσσ.



REALISTIC LHC COLLISION SCHEME

Limits of applicability

Figure 5 allows to estimate the limits of our first order
Lie-algebra model. Two scenarios are considered: the case
of 25 ns bunch separation, corresponding to one head-on
and 30 long-range collisions near each of the two main in-
teraction points IP5 and IP1, and the 50-ns case when the
number of long-range collisions is about twice smaller. In-
spection of Figure 5 shows that the model is able to predict
the smear to amplitude 12σ for intensities up to 1/2 of nom-
inal for the 50 ns scenario, and to about 1/4 of the nominal
for the 25 ns case. If the bunch population is larger than
these limits, then for amplitudes above 6 σ maps of higher
order are needed.
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Figure 5: Agreement between Lie-algebra model (red) and
Sixtrack (blue) for increasing bunch population Nb and two
LHC collision schemes “50 ns” and “25 ns” (head-on is
included). The curves correspond to 1, 1/2 and 1/5 times
the nominal bunch population N0

b = 1.15 1011.

Individual contributions of long-range collision
points

It is of interest to compare the individual terms
h̃(k)(A,φ) in Eqn. 4. Each such term describes the con-
tribution of a single collision point to distortion of the ordi-
nary Courant-Snyder invariant and hence to smear. One ex-
ample is shown on Figure 6 for the “25-ns” case of Figure 5
(right), initial amplitude 6 σ and Nb = 1/2N0

b . Only long-
range collisions near IP5 (30 in total) are included since
both the contribution from IP1 and the total contribution
from head-on events are small. The top plot corresponds
to nominal values of the separations while the bottom one,
to the early separation scheme [7]. In the latter case, hor-
izontal smear is dominated by contributions (light blue) of
collisions in immediate vicinity of IP5, which change their
d̃x value from ±9.4 to ±5σ.
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Figure 6: Individual contributions to h of the 30 long-range
collisions near IP5 (horizontal crossing) for two scenarios:
nominal (top) and early separation [7] (bottom).
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