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Abstract
The two-dimensional coefficients (resonance basis) in the

Fourier expansion of the long-range beam-beam Hamilto-
nian have been expressed through the (little known) gen-
eralized modified Bessel functions of two arguments. We
present a procedure to compute these coefficients in the
above representation. The method is applied to the nominal
scenario HL-LHC lattice and benchmarked against MadX
simulations of detuning.

INTRODUCTION
The Fourier-expansion coefficients of the accelerator

Hamiltonian appear naturally in analytical calculations of
amplitude detuning, low-order normal form and related to
it driving terms. In studies of long-range beam-beam in-
teraction with neglected bunch-length effects, i.e. a two-
dimensional HamiltonianH(x, y), the coefficients cmk are
usually expressed through modified Bessel functions of the
first kind In(u), or their relatives [4], and given as single
integrals over sum of the products of two In(u) [1–3]. High
∼ 40 orders n are needed – [1], [2].
In this paper cmk are expressed through generalized

Bessel functions depending on two real variables [5], [6]:

In(u, v) ≡
∞∑

q=−∞
In−2q(u)Iq(v), (1)

These In(u, v) have properties very similar to the above
ordinary Bessel In(u), but are much less familiar. Equiv-
alently, one may use the functions Λn(u1, u2) =
e−u1−u2In(u1, u2), which possess similar properties. Ei-
ther kind forms resonance basis for the above Hamiltonian
deemed to be more-natural than the one based on their ordi-
nary single-argument counterparts.
The formulae used below for generating function, re-

cursion and derivatives of I and Λ have been derived by
transforming the results in [6] – a paper devoted to two-
dimensional analogues of Jn(x). For Λ no references have
been found.

We will derive relations between cmk and I (or Λ) focus-
ing on applications to HL-LHC, i.e. case of large separa-
tions and long-range collision points with unequal sigmas of
strong and weak beam (r 6= 1) – this may also be relevant to
wire compensation of beam-beam 1. Numerical procedure
in fortran has been developed that relies on precomputed
and stored Λ functions. In the last Section, analytic ampli-
tude detuning is benchmarked against MadX tacking in the
HL-LHC lattice.
∗ TRIUMF receives funding via a contribution agreement through the
National Research Council of Canada.

1 S. Fartoukh, private communication

HAMILTONIAN COEFFICIENTS VIA
TWO-ARGUMENT BESSEL FUNCTIONS
When written in terms of unperturbed action-angle vari-

ables, the Hamiltonian H(x,y) describing the beam-beam
kick at a head-on (HO), or long-range (LR) interaction point
(IP) depends on az , dz (z=x,y)– normalized test-particle am-
plitude and full separation at this IP. We assume round-beam
optics and equal emittances of weak and strong beam, but
possibly “flat-beam” long-range IP, i.e. onewithβx 6= βy , so
that r ≡ σy

σx
6= 1. In this latter case, let us use the symmetry

of Interaction Region 5 (IR5), where the beams are sepa-
rated in x direction. Here weak and strong-beam sigmas are
related by σwx = σy σwy = σx, so that: x = rσxax sinφx,
y = σy

r ay sinφy. Thus, for r 6= 1, the formulae below are
valid for IR5, while IR1 (vertical separation) can be treated
symmetrically. The case r = 1 is generic (the formulae are
valid for any insertion).

For an IP in IR5 the Hamiltonian, in units of Nbr0
γ , is:

H(x, y) =
∫ 1

0

dt

tg(t) [1− e−t(Px+Py)];

Pz ≡
1
2
(
d̄z + āz sinφz

)2
,

āx = rax, d̄x = dx, āy = ay
g(t) , d̄y = rdy

g(t) ,

where γ is the relativistic factor, Nb is the bunch popula-
tion and g(t) ≡

√
1 + (r2 − 1) t. Removing the bar in all

variables gives the generic case of round-beam IP (r = 1,
g = 1). By expanding Pz , we have the relations:

−tPz = −u(z)
1 sinφz + 2u(z)

2 sin2 φz + u
(z)
3 (2)

u
(z)
1 = tāz d̄z, u

(z)
2 = − t4 āz

2, u
(z)
3 = − t2 d̄

2
z,

u
(z)
23 ≡ u

(z)
2 + u

(z)
3 = − t2(āz − d̄z)2 − u(z)

1 − u(z)
2 .

Using Eqn. (2), the Fourier coefficients

cmk = 1
4π2

∫ 2π

0

∫ 2π

0
He−imφx−ikφydφxdφy

are expressed [1], [2], [8] as integrals over Bessel series
(the Introduction). Somewhat more directly, let us combine
(2) with the generating function for two-argument Bessel
functions:

e−u1 sinφz+u2(2 sinφz
2−1) =

∞∑
k=−∞

ikIk(u1, u2)eikφz . (3)

The result is (here δ = 1 ifm = k = 1 and 0 otherwise):

cmk =
∫ 1

0

dt

tg(t)

[
δ − Q(x)

m (t) Q(y)
k (t)

]
(4)



The Qs can be written either in terms of I, or Λ:

Q(z)
m (t) ≡ imeu

(z)
23 Im(u(z)

1 , u
(z)
2 ) = (5)

= ime−
t
2 (āz−d̄z)2

Λm(u(z)
1 , u

(z)
2 ). (6)

Barring small differences in notation, and the fact that for
r 6= 1 the IR5 symmetry has already been embedded, this is
identical to [2], see e.g. Eqn 52. Notice that the first form (5)
contains no barred variables while the second (6) does, but is
more intuitive: for in-plane LR collision the exponent factor
is just the squared distance ax−|dx| between the weak-beam
particle amplitude and the strong-beam centroid.
Particular cases follow directly. E.g. for in-plane LR

collision one uses that in the y-plane I0(0, 0) = 1, to
get: cm ≡ cm,0 =

∫ 1
0
dt
t (δ(m)−K(t)), where K(t) =

ime−
t
4a

2
xe−

t
2d

2
xIm,0(taxdx,− t

4a
2
x).

RECURSIVE PROPERTIES
The functions Im(u1, u2) obey one recursion

u1 [Im−1 − Im+1] + 2u2 [Im−2 − Im+2] = 2mIm, (7)

and two derivative properties:

∂Im
∂u1

= 1
2 [Im−1 + Im+1] ; ∂Im

∂u2
= 1

2 [Im−2 + Im+2]
(8)

(and a similar one for Λ). On the other hand, by rewriting
(4) using (5) the coefficients cmk are:∫ 1

0

dt

tg(t)

[
δ − im+keu

(x)
23 +u(y)

23 Im(u(x)
1 , u

(x)
2 )Ik(u(y)

1 , u
(y)
2 )
]

(9)
Hence the higher-order resonance coefficients are not inde-
pendent. For fixed arguments u1 and u2, (7) allows to find
easily Im for allm, given the first four (Im form = 0, 1, 2, 3)
– useful also in numerical calculations (see below). A recur-
sive procedure for cmk has been found – albeit rather difficult
to solve, so not used in numerical calculations – where the
complication arising from Im being under an integral sign
is compensated by the additional differential relations (8).
Our (preliminary) conclusion is that at least in principle, the
cmk can all be expressed through the ones of order up to and
including orderm = 3 (“octupole”), assuming a beam-beam
“multipole” has been defined in the new resonance basis in a
way similar to “usual” multipoles.

The following conjecture is then made. If, as a result of
lumped correction, local, i.e. at this IP, compensation of all
terms to order m = 3 has taken place, then all resonance
terms are also canceled. On the other hand, as we will
see, (8) allows to express amplitude dependent tune-shifts
using the first three (Im for m = 0, 1, 2). To summarize,
if terms up to order 2 (“sextupole”) are locally minimized,
then the footprint is reduced. If in addition them = 3 term
is minimized, then this leads to all resonance terms being
small. Same or similar conclusions have been made in [7].

FOOTPRINT
The nonlinear detunings with amplitude ∆Qx, ∆Qy are

given by the partial derivatives of c00 over the actions Jx, Jy .
By settingm = k = 0 in (4) and replacing δ with unity:

c00 =
∫ 1

0

dt

t g(t)

[
1−Q(x)

0 (t)Q(y)
0 (t)

]
;

∂c00

∂ax
= −

∫ 1

0

dt

t g(t)
∂Q(x)

0 (t)
∂ax

Q(y)
0 (t) (10)

(and similar for y);

∆Qz = 2ξ 1
az

∂c00

∂az
, where z = x or y. (11)

Here ξ ≡ Nbr0
4πγε is the beam-beam parameter (both H and

c0,0 are in units of Nbr0
γ ) and we have used daz

dJz
= − 1

εaz
.

According to (11) one needs to compute (10) twice, where
under the integral there is the product of Q and a derivative
of Q (with x ↔ y). The derivative can be taken using a
property as (8). The result, in terms of Λ, is:

Q(z)
0 = e−

t
2 (āz−d̄z)2

Λ0,

∂Q(z)
0

∂az
= ηze

− t
2 (āz−d̄z)2

[
− āz2 [Λ0 + Λ2] + d̄zΛ1

]
ηx ≡ rt, ηy ≡ t/g(t);

Λ0,1,2 ≡ Λ0,1,2(u(z)
1 , u

(z)
2 ). (12)

As advertised, the footprint depends on the first three Λ.
Finally notice that in (10), since 1/t cancels and g > 0 for
any r, there is no singularity under the integral.

Familiar expression for single-plane head-on, IP without
offset, follow from Im−2q(0) = δ(m− 2q), or alternatively
from Im(0, u2) = Im/2(u2) (only evenm remain).
The tune-shift expressions derived in [3] (r = 1 only)

follow from (10) by replacing in it Λ with its generating
function form (3), reversing the order of integration and
using the fact that for r = 1 (only!) the integral over t is
solvable.

NUMERICAL IMPLEMENTATION AND
COMPARISON WITH MADX

For numerical calculations of both cmk and detuning we
have encoded the two-dimensional Bessel functions either in
Mathematica (any Bessel arguments), or as a fortran code
(faster). In fortran, we take advantage of the recursion
property: since all cmk depend on only four two-argument
functions In, these are precomputed and stored as four ta-
bles. Thus only cases n=0,1,2,3 need be computed to high
accuracy as the rest of In follow recursively. The integral
over t is taken using bi-linear approximation of these tables.
In what follows, our goal is to verify the Hamiltonian

by comparing expressions (11), (12) with MadX tracking
(dynaptune) and prove overall applicability of the method
at nominal HL-LHC settings, i.e. large Bessel arguments,
summing range qmax and size of the prestored fortran
arrays.
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Figure 1: az ranges – 15 angles (left) and 3 angles (right).
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Figure 2: Sample IPs with r = 1: 1) head-on IP1 and 5;
2) single long range IP closest to IP5, bbip5L1 for half the
nominal crossing angle (required qmax=25); 3) same as 2),
but full nominal crossing angle (required qmax=35)
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Figure 3: IP with r=0.5: nominal HL-LHC (bbip5R10)

All examples are made with Mathematica, however for
amplitudes az < 7 the fortran code is able to reproduce all
plots, except for Fig. 4. We use HL-LHC with round-beam
optics at IP1(5), β?= 15 cm, full crossing angle 295 µrad an-

gle, normalized emittance εnorm = 2.5 µm, Nb = 1× 1011

(ξ= 0.00488). Tracking is for ∼ 103 turns, on-momentum,
with beam-beam being the only nonlinearity. The agreement
between MadX tracking and the detuning formula (12) is
demonstrated on Fig. 2 (r = 1), Fig. 3 (r < 1) and Fig. 4
(r > 1) with the beam-beam setup and initial amplitude
range referring to Fig. 1 as indicated on the left.

az as Fig 1 right
dx dy σx[mm] r
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Figure 4: IP with r=2: nominal HL-LHC (bbip5L10)

The nominal HL-LHC setup implies very small tune-shifts
per long-range IP, hence the need of high accuracy – the
relative difference (∆Q/Q) between tracking and analytic
formula is predominantly better than 4×10−4. For each plot,
before the comparison is made, tiny tune shifts ∼ 5× 10−5

still present in the beam-beam free lattice are subtracted
from the MadX output. For case 3 on Figure 2 the qmax had
to be increased from 25 to 35 – otherwise the last two red
circles at the bottom would deviate substantially. Largest
Bessel arguments correspond to the setup in Fig. 4: max-
imum az =12, ds ∼ 19 with r=2. In this last case the
Mathematica’s computing time was ∼ 300 sec.

The author thanksY. Papaphilippou, S. Fartoukh, R. Baart-
man and F. Jones for helpful discussions and suggestions.
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