FOURIER COEFFICIENTS OF LONG-RANGE BEAM-BEAM HAMILTONIAN VIA TWO-DIMENSIONAL BESSEL FUNCTIONS[∗]

D. Kaltchev, Triumf, Vancouver, Canada

Abstract

The two-dimensional coefficients (resonance basis) in the Fourier expansion of the long-range beam-beam Hamiltonian have been expressed through the (little known) generalized modified Bessel functions of two arguments. We present a procedure to compute these coefficients in the above representation. The method is applied to the nominal scenario HL-LHC lattice and benchmarked against MadX simulations of detuning.

INTRODUCTION

The Fourier-expansion coefficients of the accelerator Hamiltonian appear naturally in analytical calculations of amplitude detuning, low-order normal form and related to it driving terms. In studies of long-range beam-beam interaction with neglected bunch-length effects, i.e. a twodimensional Hamiltonian $H(x, y)$, the coefficients c_{mk} are usually expressed through modified Bessel functions of the first kind $I_n(u)$, or their relatives [\[4\]](#page-2-0), and given as single integrals over sum of the products of two $I_n(u)$ [1–3]. High \sim 40 orders *n* are needed – [\[1\]](#page-2-1), [\[2\]](#page-2-2).

In this paper *cmk* are expressed through generalized Bessel functions depending on two real variables [\[5\]](#page-2-3), [\[6\]](#page-2-4):

$$
\mathbf{I}_n(u,v) \equiv \sum_{q=-\infty}^{\infty} I_{n-2q}(u) I_q(v), \tag{1}
$$

These $I_n(u, v)$ have properties very similar to the above ordinary Bessel $I_n(u)$, but are much less familiar. Equivalently, one may use the functions $\Lambda_n(u_1, u_2)$ $e^{-u_1 - u_2} I_n(u_1, u_2)$, which possess similar properties. Either kind forms resonance basis for the above Hamiltonian deemed to be more-natural than the one based on their ordinary single-argument counterparts.

The formulae used below for generating function, recursion and derivatives of **I** and **Λ** have been derived by transforming the results in $[6]$ – a paper devoted to twodimensional analogues of $J_n(x)$. For Λ no references have been found.

We will derive relations between c_{mk} and **I** (or Λ) focusing on applications to HL-LHC, i.e. case of large separations and long-range collision points with unequal sigmas of strong and weak beam $(r \neq 1)$ – this may also be relevant to wire compensation of beam-beam ^{[1](#page-0-0)}. Numerical procedure in fortran has been developed that relies on precomputed and stored Λ functions. In the last Section, analytic amplitude detuning is benchmarked against MadX tacking in the HL-LHC lattice.

HAMILTONIAN COEFFICIENTS VIA TWO-ARGUMENT BESSEL FUNCTIONS

When written in terms of unperturbed action-angle variables, the Hamiltonian $H(x,y)$ describing the beam-beam kick at a head-on (HO), or long-range (LR) interaction point (IP) depends on a_z , d_z (z=x,y)– normalized test-particle amplitude and full separation at this IP. We assume round-beam optics and equal emittances of weak and strong beam, but possibly "flat-beam" long-range IP, i.e. one with $\beta_x \neq \beta_y$, so that $r \equiv \frac{\sigma_y}{\sigma_y}$ $\frac{\sigma_y}{\sigma_x} \neq 1$. In this latter case, let us use the symmetry of Interaction Region 5 (IR5), where the beams are separated in x direction. Here weak and strong-beam sigmas are related by $\sigma_x^w = \sigma_y \ \sigma_y^w = \sigma_x$, so that: $x = r \sigma_x a_x \sin \phi_x$, $y = \frac{\sigma_y}{r} a_y \sin \phi_y$. Thus, for $r \neq 1$, the formulae below are valid for IR5, while IR1 (vertical separation) can be treated symmetrically. The case $r = 1$ is generic (the formulae are valid for any insertion).

For an IP in IR5 the Hamiltonian, in units of $\frac{N_b r_0}{\gamma}$, is:

$$
H(x, y) = \int_0^1 \frac{dt}{tg(t)} [1 - e^{-t(P_x + P_y)}];
$$

\n
$$
P_z = \frac{1}{2} (\bar{d}_z + \bar{a}_z \sin \phi_z)^2,
$$

\n
$$
\bar{a}_x = ra_x, \ \bar{d}_x = d_x, \ \bar{a}_y = \frac{a_y}{g(t)}, \ \bar{d}_y = \frac{r d_y}{g(t)},
$$

where γ is the relativistic factor, N_b is the bunch population and $g(t) \equiv \sqrt{1 + (r^2 - 1)t}$. Removing the bar in all variables gives the generic case of round-beam IP ($r = 1$, $g = 1$). By expanding P_z , we have the relations:

$$
-tP_z = -u_1^{(z)} \sin \phi_z + 2u_2^{(z)} \sin^2 \phi_z + u_3^{(z)}
$$
 (2)

$$
u_1^{(z)} = t\bar{a}_z \bar{d}_z, \ u_2^{(z)} = -\frac{t}{4} \bar{a}_z^2, \ u_3^{(z)} = -\frac{t}{2} \bar{d}_z^2,
$$

$$
u_{23}^{(z)} \equiv u_2^{(z)} + u_3^{(z)} = -\frac{t}{2} (\bar{a}_z - \bar{d}_z)^2 - u_1^{(z)} - u_2^{(z)}.
$$

Using Eqn. (2), the Fourier coefficients

$$
c_{mk} = \frac{1}{4\pi^2} \int_0^{2\pi} \int_0^{2\pi} He^{-im\phi_x - ik\phi_y} d\phi_x d\phi_y
$$

are expressed [\[1\]](#page-2-1), [\[2\]](#page-2-2), [\[8\]](#page-2-5) as integrals over Bessel series (the Introduction). Somewhat more directly, let us combine (2) with the generating function for two-argument Bessel functions:

$$
e^{-u_1 \sin \phi_z + u_2 (2 \sin \phi_z^2 - 1)} = \sum_{k=-\infty}^{\infty} i^k \mathbf{I}_k(u_1, u_2) e^{ik\phi_z}.
$$
 (3)

The result is (here $\delta = 1$ if $m = k = 1$ and 0 otherwise):

$$
c_{mk} = \int_0^1 \frac{dt}{tg(t)} \left[\delta - \mathbf{Q}_m^{(x)}(t) \mathbf{Q}_k^{(y)}(t) \right]
$$
 (4)

[∗] TRIUMF receives funding via a contribution agreement through the National Research Council of Canada.

¹ S. Fartoukh, private communication

The *Q*s can be written either in terms of **I**, or **Λ**:

$$
\mathbf{Q}_m^{(z)}(t) \equiv i^m e^{u_{23}^{(z)}} \mathbf{I}_m(u_1^{(z)}, u_2^{(z)}) = \tag{5}
$$

$$
= i^{m} e^{-\frac{t}{2}(\bar{a_{z}} - \bar{d_{z}})^{2}} \Lambda_{m}(u_{1}^{(z)}, u_{2}^{(z)}).
$$
 (6)

Barring small differences in notation, and the fact that for $r \neq 1$ the IR5 symmetry has already been embedded, this is identical to [\[2\]](#page-2-2), see e.g. Eqn 52. Notice that the first form [\(5\)](#page-0-1) contains no barred variables while the second [\(6\)](#page-0-1) does, but is more intuitive: for in-plane LR collision the exponent factor is just the squared distance $a_x - |d_x|$ between the weak-beam particle amplitude and the strong-beam centroid.

Particular cases follow directly. E.g. for in-plane LR collision one uses that in the y-plane $I_0(0,0) = 1$, to get: $c_{m} \equiv c_{m,0} = \int_0^1 \frac{dt}{t} (\delta(m) - K(t))$, where $K(t) =$ $i^{m}e^{-\frac{t}{4}a_{x}^{2}}e^{-\frac{t}{2}d_{x}^{2}}\mathbf{I}_{m,0}(ta_{x}d_{x},-\frac{t}{4}a_{x}^{2}).$

RECURSIVE PROPERTIES

The functions $\mathbf{I}_m(u_1, u_2)$ obey one recursion

$$
u_1 [\mathbf{I}_{m-1} - \mathbf{I}_{m+1}] + 2u_2 [\mathbf{I}_{m-2} - \mathbf{I}_{m+2}] = 2m \mathbf{I}_m, \quad (7)
$$

and two derivative properties:

$$
\frac{\partial \mathbf{I}_m}{\partial u_1} = \frac{1}{2} \left[\mathbf{I}_{m-1} + \mathbf{I}_{m+1} \right]; \; \frac{\partial \mathbf{I}_m}{\partial u_2} = \frac{1}{2} \left[\mathbf{I}_{m-2} + \mathbf{I}_{m+2} \right]
$$
\n(8)

(and a similar one for Λ). On the other hand, by rewriting [\(4\)](#page-0-1) using [\(5\)](#page-0-1) the coefficients c_{mk} are:

$$
\int_0^1 \frac{dt}{tg(t)} \left[\delta - i^{m+k} e^{u_{23}^{(x)} + u_{23}^{(y)}} \mathbf{I}_m(u_1^{(x)}, u_2^{(x)}) \mathbf{I}_k(u_1^{(y)}, u_2^{(y)}) \right]
$$
\n(9)

Hence the higher-order resonance coefficients are not independent. For fixed arguments u_1 and u_2 , [\(7\)](#page-0-1) allows to find easily \mathbf{I}_m for all *m*, given the first four (\mathbf{I}_m for $m = 0, 1, 2, 3$) – useful also in numerical calculations (see below). A recursive procedure for c_{mk} has been found – albeit rather difficult to solve, so not used in numerical calculations – where the complication arising from I_m being under an integral sign is compensated by the additional differential relations [\(8\)](#page-0-1). Our (preliminary) conclusion is that at least in principle, the *cmk* can all be expressed through the ones of order up to and including order $m = 3$ ("octupole"), assuming a beam-beam "multipole" has been defined in the new resonance basis in a way similar to "usual" multipoles.

The following conjecture is then made. If, as a result of lumped correction, *local*, i.e. at this IP, compensation of all terms to order $m = 3$ has taken place, then all resonance terms are also canceled. On the other hand, as we will see, [\(8\)](#page-0-1) allows to express amplitude dependent tune-shifts using the first three $(I_m$ for $m = 0, 1, 2)$. To summarize, if terms up to order 2 ("sextupole") are locally minimized, then the footprint is reduced. If in addition the $m = 3$ term is minimized, then this leads to all resonance terms being small. Same or similar conclusions have been made in [\[7\]](#page-2-6).

FOOTPRINT

The nonlinear detunings with amplitude ΔQ_x , ΔQ_y are given by the partial derivatives of c_{00} over the actions J_x, J_y . By setting $m = k = 0$ in [\(4\)](#page-0-1) and replacing δ with unity:

$$
c_{00} = \int_0^1 \frac{dt}{t g(t)} \left[1 - \mathbf{Q}_0^{(x)}(t) \mathbf{Q}_0^{(y)}(t) \right];
$$

\n
$$
\frac{\partial c_{00}}{\partial a_x} = - \int_0^1 \frac{dt}{t g(t)} \frac{\partial \mathbf{Q}_0^{(x)}(t)}{\partial a_x} \mathbf{Q}_0^{(y)}(t) \qquad (10)
$$

\n(and similar for y);
\n
$$
\Delta Q_z = 2\xi \frac{1}{a_z} \frac{\partial c_{00}}{\partial a_z}, \text{ where } z = x \text{ or } y. \qquad (11)
$$

Here $\xi \equiv \frac{N_b r_0}{4\pi \gamma \epsilon}$ is the beam-beam parameter (both *H* and $c_{0,0}$ are in units of $\frac{N_b r_0}{\gamma}$ and we have used $\frac{da_z}{dJ_z} = -\frac{1}{\epsilon a_z}$. According to [\(11\)](#page-0-1) one needs to compute [\(10\)](#page-0-1) twice, where under the integral there is the product of *Q* and a derivative of *Q* (with $x \leftrightarrow y$). The derivative can be taken using a property as [\(8\)](#page-0-1). The result, in terms of **Λ**, is:

$$
\mathbf{Q}_{0}^{(z)} = e^{-\frac{t}{2}(\bar{a}_{z} - \bar{d}_{z})^{2}} \mathbf{\Lambda}_{0},
$$
\n
$$
\frac{\partial \mathbf{Q}_{0}^{(z)}}{\partial a_{z}} = \eta_{z} e^{-\frac{t}{2}(\bar{a}_{z} - \bar{d}_{z})^{2}} \left[-\frac{\bar{a}_{z}}{2} \left[\mathbf{\Lambda}_{0} + \mathbf{\Lambda}_{2} \right] + \bar{d}_{z} \mathbf{\Lambda}_{1} \right]
$$
\n
$$
\eta_{x} \equiv rt, \quad \eta_{y} \equiv t/g(t);
$$
\n
$$
\mathbf{\Lambda}_{0,1,2} \equiv \mathbf{\Lambda}_{0,1,2}(u_{1}^{(z)}, u_{2}^{(z)}).
$$
\n(12)

As advertised, the footprint depends on the first three **Λ**. Finally notice that in [\(10\)](#page-0-1), since 1*/t* cancels and *g >* 0 for any *r*, there is no singularity under the integral.

Familiar expression for single-plane head-on, IP without offset, follow from $I_{m-2q}(0) = \delta(m-2q)$, or alternatively from $\mathbf{I}_m(0, u_2) = I_{m/2}(u_2)$ (only even *m* remain).

The tune-shift expressions derived in [\[3\]](#page-2-7) $(r = 1 \text{ only})$ follow from [\(10\)](#page-0-1) by replacing in it Λ with its generating function form [\(3\)](#page-0-1), reversing the order of integration and using the fact that for $r = 1$ (only!) the integral over t is solvable.

NUMERICAL IMPLEMENTATION AND COMPARISON WITH MADX

For numerical calculations of both *cmk* and detuning we have encoded the two-dimensional Bessel functions either in *Mathematica* (any Bessel arguments), or as a fortran code (faster). In fortran, we take advantage of the recursion property: since all *cmk* depend on only four two-argument functions I_n , these are precomputed and stored as four tables. Thus only cases n=0,1,2,3 need be computed to high accuracy as the rest of I_n follow recursively. The integral over *t* is taken using bi-linear approximation of these tables.

In what follows, our goal is to verify the Hamiltonian by comparing expressions [\(11\)](#page-0-1), [\(12\)](#page-0-1) with MadX tracking (dynaptune) and prove overall applicability of the method at nominal HL-LHC settings, i.e. large Bessel arguments, summing range *q*max and size of the prestored fortran arrays.

Figure 1: *a^z* ranges – 15 angles (left) and 3 angles (right).

Figure 2: Sample IPs with $r = 1$: 1) head-on IP1 and 5; **2)** single long range IP closest to IP5, bbip5L1 for half the nominal crossing angle (required *q*max=25); **3)** same as **2)**, but full nominal crossing angle (required *q*max=35)

Figure 3: IP with r=0.5: nominal HL-LHC (bbip5R10)

All examples are made with *Mathematica*, however for amplitudes $a_z < 7$ the fortran code is able to reproduce all plots, except for Fig. [4.](#page-0-1) We use HL-LHC with round-beam optics at IP1(5), β^* = 15 cm, full crossing angle 295 μ rad angle, normalized emittance $\epsilon_{\text{norm}} = 2.5 \ \mu \text{m}, N_b = 1 \times 10^{11}$ ($ξ$ = 0.00488). Tracking is for $\sim 10^3$ turns, on-momentum, with beam-beam being the only nonlinearity. The agreement between MadX tracking and the detuning formula [\(12\)](#page-0-1) is demonstrated on Fig. [2](#page-0-1) ($r = 1$), Fig. [3](#page-0-1) ($r < 1$) and Fig. [4](#page-0-1) $(r > 1)$ with the beam-beam setup and initial amplitude range referring to Fig. [1](#page-0-1) as indicated on the left.

Figure 4: IP with r=2: nominal HL-LHC (bbip5L10)

The nominal HL-LHC setup implies very small tune-shifts per long-range IP, hence the need of high accuracy – the relative difference (∆*Q/Q*) between tracking and analytic formula is predominantly better than 4×10^{-4} . For each plot, before the comparison is made, tiny tune shifts $\sim 5 \times 10^{-5}$ still present in the beam-beam free lattice are subtracted from the MadX output. For case 3 on Figure [2](#page-0-1) the q_{max} had to be increased from 25 to 35 – otherwise the last two red circles at the bottom would deviate substantially. Largest Bessel arguments correspond to the setup in Fig. [4:](#page-0-1) maximum a_z =12, d_s ∼ 19 with r=2. In this last case the *Mathematica*'s computing time was ∼ 300 sec.

The author thanks Y. Papaphilippou, S. Fartoukh, R. Baartman and F. Jones for helpful discussions and suggestions.

REFERENCES

- [1] Y. Papaphilippou, F. Zimmermann, *Estimates of diffusion due to long-range beam-beam collisions*, Phys Rev ST, Volume 5, 074001 (2002)
- [2] T. Sen et al, *Beam-beam effects at the Fermilab Tevatron: Theory*, Phys Rev ST, Volume 7, 041001 (2004)
- [3] G. Lopez, *Head-On and Long Range Beam-Beam Tune Shifts Spread in the SSC*, SSCL-442 (1991)
- [4] Y.Alexahin, *Analytical study of the incoherent beam-beam resonances*, FERMILAB-PUB-00-120-T (2000).
- [5] Clemente Cesarano and Claudio Fornaro, *Generalized Bessel functions in terms of generalized Hermite polynomials*, International Journal of Pure and Applied Mathematics Volume 112 No. 3 2017, 613-629 (see e.g. Eqn 27)
- [6] H. J. Korsch, A. Klumpp , D. Witthaut, *On two-dimensional Bessel functions*, Journal of Physics A, V39, 48 (2006)
- [7] S. Fartoukh, A. Valishev, Y. Papaphilippou, D. Shatilov, *Compensation of the long-range beam-beam interactions as a path towards new configurations for the high luminosity LHC*, Phys. Rev. ST Accel. Beams 18, 121001 (2015)
- [8] D. Kaltchev, *Analysis of long range studies in the LHC - comparison with the model*, Beam-Beam ICFA mini workshop, Geneva (2013)