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Abstract
We find that the observed dependencies (scaling) of

long-range beam-beam effects on the beam separation and
intensity are consistent with the simple assumption that,
all other parameters being the same, the quantity preserved
during different setups is the first order smear as a function
of amplitude.

INTRODUCTION

Proposed method
In several Machine Development (MD) studies, see [1]

and the references therein, reduced crossing angles have
been used to enhance long-range beam-beam effects and
thus facilitate their measurement. The basic assumption
taken in this paper is that under such conditions a sin-
gle nonlinearity, the one caused by beam-beam, dominates
the dynamics. Hence the method followed: we choose
some simple low-order dynamical quantity that character-
izes phase space distortion and assume that when this quan-
tity is the same, the behavior of the system is the same. A
most obvious candidate is the first-order smear – r.m.s. de-
viation of the phase-space ellipse from the perfect one. At
a fixed amplitude smear is defined as the averaged general-
ized Courant-Snyder invariant over the angle variable [8].

An analytical expression was previously found [8] for
the smear S as a function of amplitude nσ . Suppose that
the parametric dependence of S(n) on several beam-beam
related parameters: relativistic γ, number of particles per
bunch Nb, crossing angle α and normalized separations
nl.r. is known. According to the assumption above for two
machine configurations a and b one should have:

S(nσ;Na
b , n

a
l.r., α

a, γa) = S(nσ;N b
b , n

b
l.r., α

b, γb). (1)

As a particular application of (1), we considered two ex-
periments where the intensities are Na

b and N b
b . All other

parameter being the same, given αa, one can compute the
expected αb. Our task will be to show that the result agrees
with observations.

Analytical calculation of invariant and smear
Our derivation of S(nσ) is based on the Lie-algebraic

method – concatenation of Lie-factor maps, and is valid
only to first order in the beam-beam parameter and in one-
dimension, either in horizontal or in vertical plane, but for
an arbitrary distribution of beam-beam collisions, head-on
or long-range, around the ring.

For a ring with single head-on collision point, Hamil-
tonian perturbation analysis of the beam-beam inter-
action without or with crossing angle has been done
by a number of authors, mostly in the resonant case.
Nonlinear invariants of motion, both nonresonant and
resonant, were analyzed by Dragt [2] with the one-
turn map as observed immediately after the kick being

Μ

e
:F :

R e:F : = e:h: . (2)

Here R = e:f2: is the lin-
ear one-turn map and the kick-
factor F is the beam-beam poten-
tial (= - Hamiltonian). For small
perturbations and far from res-
onances, particle coordinates in

phase space are restricted on the Poincare surface of sec-
tion

h = const . (3)

Detailed derivation of h to first order in the beam-beam
perturbation strength can be found in A. Chao’s lectures:

h(J, φ) = −µJ +
∞∑

n=−∞
c(ho)
n (J)

nµ

2 sin nµ
2

ein(φ+µ/2) , (4)

where µ is the ring phase advance and c(ho)
n (J) are coef-

ficients in the Fourier expansion of F , when the latter is
rewritten in action-angle coordinates J, φ. The coefficients
are shown to be related to the modified Bessel functions.
Analytic expressions for the invariant h, first-order smear
and second order detuning for the case of nonlinear multi-
pole kicks distributed in an arbitrary way around the ring
were derived by Irvin and Bengtsson [4]. Smear, the dis-
tortion of the ideal phase-space ellipse, is formally defined
in [6]. Finally, notice that extracting the smear is a natural
step in the procedure that brings the map into its normal
form, [5],

In [7], following the Lie algebraic procedure in [3] and
[4] we generalized (4) to describe multiple head-on kicks
(IP1 and IP5) for the case of LHC). In [8] an expression
was presented valid for arbitrary number of head-on (h.o.)
and long-range (l.r.) collisions. This expression, to be de-
rived in detail next, has been used on several occasions to
interpret results from Sixtrack simulations.

DERIVATION OF THE INVARIANT
Multiple collision points

The horizontal betatronic motion of a weak-beam test
particle depends on its initial amplitude nσ (in units of σ)



and the collision set: a set of all h. o. and l. r. collisions,
a.k.a. interaction points (IPs), that this particle sees over a
single revolution. Let us label the set with an index k, lim-
iting ourselves to only IPs located within the main inter-
action regions IR5 (horizontal crossing) and IR1 (vertical
crossing). In case of 50 ns bunch spacing, k ranges from 1
to 34 which includes 32 long-range IPs (Nl. r. = 32).

The Lie map depends on the above defined collision set
through the normalized separations n(k)

x,y = d
(k)
x,y/σ(k) and

the unperturbed horizontal betatronic phases φ(k) at the
IPs. Here dx,y is the real-space offset of the strong beam
centroid in x or y direction and it has been assumed that
both the weak- and strong-beam transverse distributions are
round Gaussians of the same rms, i.e.:

σ(k) =
√
β(k)ε (β(k)

x = β(k)
y ≡ β(k)). (5)

In (5), β(k) are the beta functions and ε is the emittance.
It will be shown below that off-plane collisions contribute
very little to smear, thus after excluding these the problem
becomes one-dimensional and may easily be illustrated,
Figure 1. Here n(k)

x are the strong-beam centroids in am-
plitude space: points (s(k), n(k)

x ) with s being the distance
to IP5 in meters.

n
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Figure 1: Schematic view of weak and strong beam tra-
jectories in real (top) and amplitude (bottom) spaces. A
reduced set is used: Nl. r. = 8+8 = 16 (k=1,18).

Beam-beam Hamiltonian
For a single collision, (2), by omitting the superscript k

in σ and nx,y , the x-motion is described by a kick-factor F
(or Hamiltonian H) [8]

F = −H(x) =
∫ P

0

(1− e−α)
dα

α
= (6)

= γ + Γ0(P ) + ln(P ) , (7)

P = P (x) =
1
2

[
(nx +

x

σ
)2 + n2

y

]
,

where F is in units of λ ≡ Nbr0
γ , r0 is the classical parti-

cle radius, Γs(P ) ≡ Γ(s, P ) denotes the upper incomplete

gamma function [9] and γ = 0.577216 is the Euler’s con-
stant. The corresponding beam-beam kick is:

∆x′ ≡ d
dxF (x) = ∂F

∂P
dP
dx =

= 2(x+nxσ)
(x+nxσ)2+(nyσ)2

[
1− e−

(x+nxσ)2+(nyσ)2

2σ2

]
. (8)

The Fourier expansion of H is:

H(nσ, φ) =
∑
m

Cmeimφ , (9)

where Cm ≡ 1
2π

∫ 2π

0
e−imφH dφ. These coefficients are

easily computed numerically by using the implementation
of Γ in Mathematica, [8]. Further, analytic expressions in
the form of single integrals over Bessel functions have been
derived in [11]. We display these again in the simplified
case ny = 0 (no off-plane collisions):

Cm|ny=0 =
∫ 1

0

dt

t
×

[1− e− t2n
2
xe−

t
4n

2
σ

∞∑
k=−∞

I−2k(t nσnx)Ik(− t
4
n2
σ)]

if m = 0 and

−e− t2n
2
xe−

t
4n

2
σ

∞∑
k=−∞

imIm−2k(t nσnx)Ik(− t
4
n2
σ)

if m 6= 0.

In the head-on case (n(k)
x = n

(k)
y = 0) the coefficients Cm

reduce to the c(ho)
m from [3]. Notice that in the most inter-

esting case: amplitudes near the dynamic aperture, both nσ
and nx and hence the Bessel function arguments are large
(� 1).

Our first step is to remove the linear and quadratic parts
F(1) = ∂F

∂x

∣∣
x=0

x and F(2) = 1
2
∂2F
∂x2

∣∣∣
x=0

x2. The nonlin-
ear kick-factor and corresponding kick are:

Fnonl = F − F(1) − F(2) , (10)

∆x′nonl ≡
d

dx
Fnonl(x) .

As a next step, we rewrite (10) in action-angle coordinates
J, φ by substituting in it x =

√
2Jβ sinφ = nσσ sinφ,

where nσ =
√

2I =
√

2J/ε is the test particle amplitude
(see Eq. A.1 in Appendix). Next, we expand in Fourier
series:

Fnonl(nσ σ sinφ) = c0 +
∑
m6=0

cme
imφ . (11)

The coefficients cm are naturally the same as Cm above,
with the exception of c1 and c2 which contain additional
sin and sin2 terms, see Eq. A.1.

Lie map and invariant
For an arbitrary set of collisions n(k)

x , φ(k) (k = 1, N )
we represent the LHC lattice by a combination of linear



elements and nonlinear kicks. It is shown in the Appendix
that, to first order in λ, the Lie map has the same form as
the one for a single kick (2), where however the factor F is
given by the sum:

F ≡
N∑
k=1

F
(k)
nonl(nσ, φ)

and F (k)
nonl are such that, compared to (11), the kth IP par-

ticipates with a phase shifted by φ(k).

F
(k)
nonl(nσ, φ) ≡ F

(k)
nonl(x)

∣∣∣
x→nσ σ(k) sin(φ+φ(k))

=

=
∑
m6=0

C(k)
m eimφ . (12)

The shift in phase means that the coefficients in (12) are
simply related to c(k)m : C(k)

m ≡ c
(k)
m eimφ

(k)
and still satisfy

C−m = C?m. Another important property of the expan-
sion is that only the oscillating part is taken (the m=0 term
is excluded). The invariant for multiple collision points is
(Appendix):

h(I, φ) = −µJ − λ
N∑
k=1

∞∑
m=1

mµc
(k)
m (I)

2 sin (mµ2 )
eim(φ+µ/2+φ(k))

+ c.c.

The surface of section in phase space is given by h(I, φ) =
const. A natural initial condition is now imposed: that the
initial point in phase space for a particle starting at x0 =
nσσ, i.e. with an amplitude I0 ≡ J0/ε = n2

σ/2, lies on the
curve representing the invariant:

h(I, φ) = h(I0, π/2), (13)

For a fixed I0, this equation defines implicitly I as a func-
tion of φ. It satisfies the initial condition I(0) = I0:

I(φ) = I0 +
N∑
k=1

(
dI(k)(φ)− dI(k)(0)

)
,

dI(k)(φ) = (14)

=
λ

ε

M∑
m=1

(
mc

(k)
m (I0)

2 sin (mµ/2)
eim(µ/2+φ−φ(k)+π/2) + c.c.

)

Notice that, to first order, the argument in c
(k)
m has been

replaced with I0. We have also separated the two sums
so that dI(k)(φ) − dI(k)(0) is the individual contribution
of the kth IP. In the same way, a different initial condition
may be used (more suitable for plots): I(0) = I0, instead
of I(π/2) = I0.

The smear S(nσ) is now defined as the normalized r.m.s.
of the invariant, i.e.

√
V with V being the variance:

S(nσ) =
√
V /〈 I 〉 ,

V = 1
2π

∫
(I − 〈I〉)2dφ , 〈I〉 = 1

2π

∫
Idφ .

VERIFICATION WITH TRACKING
As an example application, this section studies the very

simple collision set that still posses all the symmetries with
l.r. set at 8 sigma as depicted on Figure 2. Both IR5 and
IR1 are included. The goal here is to test the invariant I(φ)
by tracking with a simple model built with kicks ∆x′nonl

alternating with linear matrices and Sixtrack. The param-
eters are: energy 3.5 TeV, Nb = 1.2 1011 and normalized
emittance εn = 2.5 10−6. Tracking single particles at vari-
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Figure 2: Sample setup: three collisions in each IR5 and
IR1. The l.r. are set at 8 sigma.

ous amplitudes with the simple model produces the results
shown on Figure 3. A particle starts with nσ = 3, or 7
(I0 = 4.5, or 24.5). The cm are computed with accuracy
10−7 – the value ofM in (15) as about 40. Since the beam-
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Figure 3: Invariant tested on a simple kick-matrix model.
Black points: turn-by-turn coordinates (φ, I) for 103 turns.
Red: invariant I(φ) (initials chosen so that I(π/2) = I0).

beam potential changes the linear optics, we need to find
the linearly-perturbed matched β-function value at the ini-
tial point for tracking. For the plots on Figure 3 this is done
in a separate run using a linear kick (∆x′)lin (only term
∼ x2 in the Hamiltonian). This is similar to what is done
in Sixtrack. The resultant matched β is used to define the
initial coordinate x0 (through nσ). The values of the smear
are shown on the top of each plot.



Plotting the smear over a range of amplitudes with all
three methods: model, Sixtrack and analytic S(nσ) results
in Figure 4. Notice that here the images of the strong-
beam centroids (see Fig. 1) are represented with vertical
gray lines drawn at 0 and 8 sigma. Let us now look at
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Figure 4: Agreement with Sixtrack.

the individual contributions to I(φ) of the six IPs at three
amplitudes chosen arbitrarily, say nσ = 1, 3 and 7. The ex-
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Figure 5: Individual contributions dI(k)(φ) − dI(k)(0) –
color code as on Fig. 2

cursions (w.r.t. I0 ) of the individual invariant surfaces are
shown on Fig. 5. Here I(0) = I0. The color code is as on
Fig. 2 and in addition for the head-ons we use solid black
for IP5 and dashed for IP1. Near the axis (nσ = 1), only
the two head-ons contribute and, being of opposite signs,
nearly compensate each other. At nσ = 3, one begins to
see long range contributions that grow when nσ = 7. At
such large amplitudes, the compensation is no longer true.
Magenta and green are barely seen, meaning that contribu-
tion of off-plane collisions is negligible. Thus in case of
test particle moving in the horizontal motion, the contribu-
tion of all l.r. in IR1 can be neglected, and vice versa for
vertical motion and IP5.

BEHAVIOR OF THE SMEAR S(nσ) NEAR
THE DYNAMIC APERTURE

Above some critical strength of beam-beam interaction,
i.e. quantities Nl. r. and/or Nb and/or inverse crossing an-
gle, the first-order theory is no longer an adequate descrip-
tion of the smear. However, as we will see, the behavior
of S(nσ) still may be used as an indication for dynamic
aperture since it exhibits a local maximum near it. What
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Figure 6: Various combinations of number of long-range
collisions and and bunch intensity to illustrate linear and
nonlinear behavior:

Nl. r. Nb

a) 16 1.2 1011;
b) 32 1.2 1011;
c) 32 1.6 1011;
d) 32 0.2 1011.

happens is that the linear behavior, i.e. agreement between
the first-order S and Sixtrack at all amplitudes seen on Fig-
ure 4 is replaced by what is shown on Figures 6 a), b)
and c). The blue (S(nσ)) and the red (Sixtrack) curves de-
part from each other once nσ approaches amplitudes near
the strong beam core, represented by the cluster of verti-
cal gray lines. At this point the exact smear (red) exhibits
a steep growth, thus the dynamic aperture is likely to be
close to this point while S goes through a maximum and
then through a minimum, thus forming a dip. Upon exit-
ing the core, past the last gray line, the red and blue curves
nearly remerge. It can be shown that the above property of
S(nσ) is a consequence of the left-right symmetry of IR5
and IR1. Namely, the individual contributions (such as red
and blue curves on Fig. 2) change sign or flip about the axis
each time nσ crosses a gray line. At this amplitude S(nσ)
stops growing and goes through a maximum.



ANALYSIS OF LONG RANGE
EXPERIMENTS

Dependence on intensity and crossing angle
We set the parameters as at the MD: energy 3.5 TeV,

εn = 2.5 10−6 1, β? = 0.6 m.
Of all collisions sets used at the MD, let us consider three

Nl. r. =32, 24 and 16. For each of them, two parameters:
bunch intensity Nb and (half) crossing angle α uniquely
define the dependence the first-order smear on amplitude
S(nσ;Nb, α) through the following procedure. First, be-
ing a first-order quantity in λ, the smear is obviously pro-
portional to the intensity: S ∼ Nb. Secondly, the depen-
dence of n(k)

x,y on the (half) crossing angle α is given by
the well known scaling law: n(k)

x,y ∼ α
√
β?, where n(k)

x,y

are taken from some sample lattice built for β? = 0.55 m
and α = 125. Finally, the phases φ(k) are assumed to be
independent on α.

The dependence on angle is presented on Figure 7. Each
blue branch corresponds to S(nσ; 1.2×1011, α) taken over
an amplitude range where it is monotonically increasing
hence, as we already know, it will remain in agreement with
tracking for any strength of the beam-beam interaction.

����

Α = 50 - 150 Μrad, DΑ = 5 Μrad

150 Μrad
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N l.r. = 24

1 2 3 4 5
nΣ

1

2

3

4

5
S,%

N l.r. = 16

Figure 7: Dependence of the smear(amplitude) graph on
the parameter α for Nl. r. =32 (top) and Nl. r. = 24, 16
(bottom). Each graph is restricted within a domain ex-
tending up to its first maximum (red dot) (entrance into the
strong-beam core).

Coming now to the MD, the observed losses during re-
duction of the crossing angle in IP1 are shown on Figures 9
and 10 [1].

1Using as an alternative εn = 210−6 does not change any results.

drop for 
24

drop for 16

Figure 8: The collision sets for Nl. r. =24 and 16 are built
by dropping the first and last 2 or 4 elements from the full
set (Nl. r. =32).

��������

Α1

Figure 9: Experiment with Nb = 1.2 1011: losses start at
α1 ≈ 87 µrad

��������

Α2

Figure 10: Experiment with Nb = 1.6 1011: losses start at
α1 ≈ 96 µrad

Explanation of the case Nl. r. =32 (brown curves)

For Nl. r. =32 (the full 50-ns collision set shown on Fig-
ure 8) we need to explain the brown curves on Fig 9 and 10.
Here losses are seen to start at α1 ≈ 87 and α2 ≈ 96 µrad
respectively.

In view of our previous findings, the off-plane losses (in
IR5) are neglected and by using the postulate made in the
Introduction, Eqn 1, we have:

S(nσ; 1.2 1011, α1) = S(nσ; 1.6 1011, α2), (15)

which is to be solved for the angles.
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Figure 11: Graphs of S(nσ; 1.2 1011, 86) (red) and
S(nσ; 1.6 1011, 96) (blue). The smear is seen to be ≈ 3%
at 1.5 σ.

Fig 11 demonstrates that a good solution to (15) are an-
gle values α1 = 86, α2 = 96 µrad. Indeed, this Figure
shows that (15) is fulfilled not in a single point, but for
all amplitudes up to 1.5 σ where the smear reaches about
≈ 3%. What has happened of course is that scaling by a
factor 1.6/1.2, but reducing the angle from α2 to α1 has
nearly exactly preserved one particular blue branch from
Figure 7. Conversely, small variations about this solution,
say ±5 µrad, lead to red and blue curves deviatiing from
each other as this is seen on Figure 12.

0 1 2 3 4
nΣ0

1

2

3

4

5

6

7
SHnΣL, %

Α1=86 Α2=91

0 1 2 3 4
nΣ0

1

2

3

4

5

6

7
SHnΣL, %

Α1=86 Α2=101

0 1 2 3 4
nΣ0

1

2

3

4

5

6

7
SHnΣL, %

Α1=81 Α2=96

0 1 2 3 4
nΣ0

1

2

3

4

5

6

7
SHnΣL, %

Α1=91 Α2=96

Figure 12: Small variations about the solution ±5 µrad

Explanation of cases Nl. r. =24 and 16 (green and
black)

ForNl. r. =24 and 16 (reduced collision sets on Figure 8)
one needs to explain the green and black decay curves on
Fig 9 and 10. By looking now at the bottom two plots in
Figure 7, we seek for blue branches that pass through the
same maximum-smear point as found above: 3% at 1.5 σ.
The resultant branches are plotted on Figures 13 and 14
with solution angles summarized in Table 1. Again, at least
a qualitative agreement is observed to the extent allowed by
the resolution of Fig 9 and 10.

Nb green black
1.2 1011 65 53
1.6 1011 83 72

Table 1: Solutions for the crossing angle in case of green
and black decay curves – Figures 9 and 10.
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Figure 13: Nb = 1.2 1011
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Figure 14: Nb = 1.6 1011

Note that, for the four plots in Figures 13 and 14, on
three occasions the 3%-smear line intersects a monotonic
part of S(nσ) where, as we already know from Sect. 4,
there is an agreement with Sixtrack. The location of the
maxium of S (dashed vertical line) is thereby not used to
determine the angle. For the remaining case, α=53, the
location of the maximum has been used as an indicator of
dynamic aperture.
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APPENDIX
The nonlinear kick-factor (10) is

Fnonl(nσ, φ) = γ + Γ0(P ) + ln(P )− F(1) − F(2) ,

P = 1
2

(
(nx + nσ sinφ)2 + n2

y

)
,

F(1) = 2nx
(n2
x+n

2
y)

(
1− e−

n2
x+n2

y
2

)
nσ sinφ ,

F(2) =
−n2

x+n
2
y+e

−
n2
x
2 −

n2
y
2 (n2

x+n
4
x−n

2
y+n

2
xn

2
y)

(n2
x+n

2
y)

2 ×

×n2
σ sin2 φ (A.1)

By following [4], the Lie map is given by an expression of
the form:

MN+1e
:f(N):MN . . . e

:f(2):M2e
:f(1):M1 ,

f (k)(x) ≡ F (k)
nonl(x).

Here Mk, are linear operators and for brevity we have re-
placed F

(k)
nonl(x) with f (k)(x) . We will show that since

Fnonl depends only on the normalized coordinate x/σ,
once we rewrite it in terms of the eigen-coordinates at the
kth kick, the local beta-functions β(k) disappear while the
phase φ(k) is simply added to φ.

By reversing the order, the map transforming the test par-
ticle (x, px) for one turn around the ring is

M = M1e
:f(1):M2e

:f(2): . . .MNe
:f(N):MN+1 =

= e:M1f
(1):e:M2f

(2): . . . e:MNf
(N):MN+1

Reversal of the order means that in the first line all f (k) are
now functions of the same initial variables (x, px). In the
second line, accumulated linear maps Mk = M1M2...Mk

have been applied to transform the initial vector to the kick
location. Thus, as a first step, we have moved all kicks to
the front of the lattice andMN+1 is the total one-turn linear
Lie operator.

Let us denote matrices corresponding to Lie operators
with hats, e.g. M̂N+1. As a second step, with β, α be-
ing matched Twiss parameters at the end of the lattice, one
uses an A0 transform that transforms the ring matrix to a
rotation (inserting identities A0A−1

0 in between the expo-
nents):

M̂N+1

bA0−→ R̂ =
(

cosµ sinµ
− sinµ cosµ

)
,

Â0 =
( √

β 0
−α/
√
β 1/

√
β

)
.

The two steps above combined are equivalent to replacing
the argument of f by x̃k – the eigen-coordinate at the kth
location. To see this, apply the A0 transform to both kick-
factor and coordinate:

A0Mkf
(k)(x) = f (k)(A0Mkx) = f (k)(x̃k) ,

x̃k ≡ A0Mkx =
√

2β(k)J sin (φ+ φ(k)) .

One can now drop theA0 on both sides ofM and consider
the map:

M = e:
ef(1):e:

ef(2): . . . e:
ef(N):R

f̃ (k)(J, φ) = f (k)(x̃k)
R = e:f2:, : f2 : = −µJ.

To first order, one can just sum the Lie-factors:

M≈ e:F : R = e:h:, F ≡
∑N
k=1 f̃

(k).

By noticing that above, as in [4],R precedes the kick, while
in (2) and [3] the kick is assumed to be at the end of the
lattice, our map is identical to (2).

The first order invariant h is now found with the BCH
theorem. Let us write F = F̄ + F ? where F ? is the oscil-
lating part. By taking only F ?:

h(J, φ) = f2 +
: f2 :

1− e−:f2:
F ? (A.2)

F ? ≡
N∑
k=1

(f̃ (k))?

where according to (12)

(f̃ (k))? =
∑
m 6=0

C(k)
m eimφ =

∞∑
m=1

(
C(k)
m eimφ + cc

)
.

A basic property of : f2 : is to operate in a simple way on
functions of J , or eigen-vectors einφ. Also functionsG(f2)
can easily be applied to eigen-vectors:

: f2 : einφ = i n µ einφ.

G(: f2 :)einφ = G(i n µ )einφ.

If we choose G( : f2 : ) ≡ :f2:
1−e:f2: , then we have:

: G(f2) : eimφ =
= G(imµ)eimφ =

=
imµ

1− e−imµ
eimφ =

=
imµ eimφ

eimµ/2 − e−imµ/2
eimµ/2 =

=
mµeimφ

2 sin (mµ/2)
eimµ/2.



By substituting all these in (A.2) and using the property
C

(k)
m = c

(k)
m eimφ

(k)
we get:

h(J, φ) =

= −µJ − λ
N∑
k=1

∞∑
m=1

(
m µ c

(k)
m

2 sin (mµ/2)
eim(µ/2+φ+φ(k)) + c.c.

)


