Design of Betatronic and Momentum Collimation Systems with Code DJ ("Distribution of Jaws") DJ User's Guide

Dobrin Kaltchev

Abstract

This note is the User's Guide to the code DJ applied by the author in the design of the LHC collimation systems. It also provides a simple theory which demonstrates the need of tune split along the beam line for collimation of the combined (x-y) betatron amplitudes. We have derived the 2D analogue of the well known phase criterion for collimation in a plane.

1 Introduction

This note is the user's guide to the code DJ which algorithm and application to the design of betatron and momentum collimation systems of LHC were reported in [1],[2].

The DJ source (Fortran 77) and demo files can be downloaded from http://decu10.triumf.ca:8080/dk/dj.html and freely used, modified and distributed.

For a fixed optics of the collimation insertion, DJ optimizes the locations and orientations of flat collimator jaws so as to restrict the secondary halo produced by scattering of circulating protons at the primary collimators. The primary jaws are positioned upstream with respect to the optimized secondary jaws and 1-2 sigma closer to the beam axis. DJ models the initial conditions describing the secondary halo by a set of point-like sources x_0, y_0 along the edges of the primary jaws. At each source point, the initial non-normalized angles (x', y') are assumed to be within $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. For a given relative momentum offset δ , DJ minimizes the maximum betatronic invariants (amplitudes) of particles escaping all secondary jaws – combined: $A_{max} = \max(\sqrt{X^2 + X'^2 + Y^2} + Y'^2)$ and in-plane: $A_{x,max}$, $A_{y,max}$.

For a fixed set of halo sources, the secondary jaw phases $\mu_x^{(k)}$, $\mu_y^{(k)}$ (k=1,2...) define the maximum escaping amplitudes in the following way: all jaws (pairs of parallel lines in normalized X-Y space) are transformed (rotated by angles $\mu_x^{(k)}$, $\mu_y^{(k)}$) to the location of the source and the "escape window" in initial-angle space is found – its vertices giving A_{max} , $A_{x,max}$ and $A_{y,max}$. This procedure is equivalent to linear tracking with the maximum escape angles being recorded, but is much faster.

The paper also provides a simple theory of betatronic collimation (Chapter 3) based on an unpublished TRIUMF note [4]. This theory was initiated by T. Risselada from CERN [5] as an attempt to demonstrate the need of tune split to achieve adequate collimation.

A lattice setup that favours collimation of the combined (x and y) amplitude A_{max} can be defined as follows. Consider a beamline with a nonzero split of the tune advances: $\mu_x(s) \neq \mu_y(s)$, s is the longitudinal coordinate. For each source x_0, y_0 , the optimum collimator phases lay in the vicinity of a curve in the (μ_x, μ_y) -plane, defined by the relation;

$$(x_0/R)^2/\cos^2\mu_x + (y_0/R)^2/\cos^2\mu_y = 1,$$
(1)

where for a circular primary: $x_0^2 + y_0^2 = R_0^2$. This relation is the 2D analogue of the well known phase criterion for collimation in a plane: $\cos \mu = R_0/R$, where μ is the optimum phase of the collimator; R_0 and R are normalized radii at which the source and the collimator are set.

2 DJ User's Guide

The present guide corresponds to the program version dated April 15 1998.

To run DJ with input data from file fname, type:

di fname

If no fname is specified, then DJ reads input from file djin which must be present.

2.1 DJ Input Files

The file fname contains input parameters, flags specifying the kind of calculation and printout, and one or two input tables containing locations and angles of rotation of pairs of opposing jaws (everywhere in the text by "jaw parameters" we understand the parameters of the pair).

An optics file contains the lattice functions of the collimation beam line – parameter optfilename in djin). Both MAD OPTICS format [3], or a DIMAD-output format are accepted. DJ reads from optfilename the lattice section extending from marker BEGCOL to marker ENDCOL, which markers must be present, and performs a cubic-spline interpolation with the horizontal tune advance μ_x as independent variable. Creation of the MAD optics file is normally preceded by the SPLIT command, so the DJ results can be tested by taking different values of the SPLIT parameter "fraction". Our experience shows that splitting all elements including drifts into 3 to 5 parts is sufficient to find the first three digits of the maximum surviving amplitudes and that the computation time is roughly independent of the value of fraction. An example MAD script is given in the Appendix.

2.2 How to use DJ

To calculate the surviving amplitudes for a **fixed set of jaws** the user sets flag **iopt** to 0 and specifies the locations and angles of the primary jaws in file **djin** and these of the secondary jaws in either **djin**, or **input-sec-jaw-tab**.

The range of values of the relative momentum deviation δ , for which the maximum amplitudes are calculated, is controlled by the variables deltamin, deltastep and deltmax.

The set of halo sources on the borders of the primary jaws is specified by the parameters n1, np and jawlength.

The following actions take place in the case iopt=0.

- 1) primary and secondary jaws are installed in the lattice with locations and rotation angles α_i , μ_{xi} read from prim-jaw-table and input-sec-jaw-table;
 - 2) a set of point-like halo sources is generated along the borders of the primary jaws;
- 3) the maximum surviving halo amplitudes $A_{max}(\delta)$, $A_{x,max}(\delta)$ and $A_{y,max}(\delta)$ are calculated.

The maximum time needed for this calculation is 1-2 seconds.

Optimization of the secondary jaws is done for iopt> 0. The following actions take place in this case:

- 1) the primary jaws are installed in the beam line with α_i and μ_{xi} taken from the prim-jaw-table;
 - 2) a set of sources is generated;
- 3) The minimizer routine SIMANN is called **iopt** times (the minimization method is Simulated Annealing (SA)) with minimized object $F = w_1 * A_{max} + w_2 * A_{x,max} + w_3 * A_{y,max}$.

Each SA call uses as a starting point a new randomly generated input-sec-jaw-table, thus it produces a different output-sec-jaw-table. All output tables however correspond to roughly the same F – with an accuracy of the order of eps. Some proof to this basic property is suggested in Chapter 3, where it is shown that for a given lattice and a fixed set of sources the minimization task has many solutions, but they all correspond to the same A_{max} . Since all secondary jaw distributions found in this way are equivalent from the point of view of A_{max} , the user can choose the one which does not cause conflicts with the rest of hardware. Finding all solutions corresponding to a given A_{max} (or F) is only possible of the total tune interval available for secondary jaws $\mu_{x,endcol} - \mu_{x,begsec}$ is sufficiently large.

The cpu time needed depends on the number of secondary jaws and on the total number of sources.

2.3 DJ Input Format

The file djin has the following structure:

optfilename
iopt delta n1 n2 emitt DXN
iprint deltastep deltmax
w1 w2 w3
nprjaws np jawlength
prim-jaw-table
nsjaws begsec iseed eps
input-sec-jaw-table

Parameter definitions

optfilename

the name of the MAD OPTICS file. This name must begin with "opt", or "OPT". Two markers must be present in the lattice to denote the starting point (marker "BEGCOL") and the end point (marker "ENDCOL") of the collimation section. Use of the SPLIT command is recommended.

iopt optimization flag

o no minimization is done. $A_{max}(\delta)$, $A_{x,max}(\delta)$ and $A_{y,max}(\delta)$ are calculated using the input-sec-jaw-table.

> 0 the minimizer routine SA is called iopt times. The independent variables are:

 $0 < \alpha_i < 180^o$ and $\mu_{x, \text{begsec}} < \mu_{xi} < \mu_{x, \text{endcol}}$.

The minimized object function is

 $F = w_1 * A_{max} + w_2 * A_{x,max} + w_3 * A_{y,max}$

calculated for δ =delta.

Before each SA run the input-sec-jaw-table is randomized, so the run produces different output-sec-jaw-table with, however, roughly the same F.

The resultant file iopt output tables are stored in out-sec-jaw-tab. By simply renaming this file input-sec-jaw-tab the user can use it as input to DJ (see below nsjaws < 0) The resultant iopt F values are stored in file out-F

delta δ – relative momentum deviation with respect to the reference particle

n1(n2) (in σ units) aperture at which the primary (secondary) jaws are set (also half-distance between the two jaws in a pair) emitt emittance in m.rad. Using some dummy value will not affect any results except tracking. In demol.in we use the LHC emittance. DXN The maximum normalized dispersion value around the ring $D_x/\sqrt{\beta_x}$ in \sqrt{m} . Using some dummy value will not affect the result. This quantity is only used when printing the halo extents in order to compare the horizontal arc aperture and $A_{x,max}$. iprint print flag 0 basic printout; printed are $A_{max}(\delta)$, $A_{x,max}(\delta)$ and $A_{y,max}(\delta)$ for the following δ : $0 < \delta < \text{deltmax if deltstep} \neq 0$ $\delta = delta$ if deltstep = 0-1 the source points for all δ are stored in output file sources.out. The twiss functions after spline are written in file twspl.dat 1 the code prints also input to and output from the SA routine. 2,3,4 the print flag of the minimization routine SIMANN is set to iprint - 1. By increasing iprint the user can follow in more details the optimization process (see for details the comments in SIMANN). The printout might be rather lengthy. deltstep see iprint deltmax w1 w2 w3 weights used in optimization; see iopt number of rows in the prim-jaw-table nprjaws number of source points $P = (x_0, y_0)$ per each of the two primary np jaws in a pair. In the case iopt=0 and iprint=2 the source points for all delta are stored in output file sources.out jawlength (in σ units) length of the primary jaw over which sources are dis-

primary jaw is the side of an octagon

If jawlength =0 then it is assigned a value $n_1 t g(\pi/4)$, i.e. the

tributed

prim-jaw-table

angles α_i in degrees and tune advances μ_{xi} with respect to marker

BEGCOL of nprjaws primary jaws. The format is:

 $jaw_i, \ lpha_i, \ \mu_{xi}, \ i=1,...,$ nprjaws .

 jaw_i is some arbitrary jaw number. Jaws with negative jaw numbers are skipped (use this to easily remove jaws from a table).

nsjaws

number of rows in the input-sec-jaw-table.

If nsjaws < 0 then DJ reads |nsjaws| rows of this table from file

input-sec-jaw-tab.

begsec

 $\mu_{x,\mathtt{begsec}}$; see iopt

input-sec-jaw-table

(used only if iopt>0 and nsjaws >0) angles α_i in degrees and tune advances μ_{xi} with respect to marker BEGCOL of

nsjaws secondary jaws. It has the same column format as the

prim-jaw-table

seed

seed for SA

eps

error tolerance for termination of SA (a safe choice is eps $=10^{-5}$)

3 Simple collimation scheme theory. The role of the lattice tune split.

The content in this section follows an unpublished 1997 note [4]. We also assume the coordinate system to be normalized at all points along the beam line and all collimators to be circular (the case of jaws will be briefly considered at the end of the section). The primary collimator has a radius R_0 and the secondary collimators have radius $R > R_0$. As before, to analyze the effect of the collimation system on the halo, particles are generated from each point x_0, y_0 on the edge of the primary collimator with all possible forward angles. The secondary collimators are assumed to stop the particles without scattering.

3.1 The halo of the primary collimator

The halo consists of particles with coordinates x_0, x_0', y_0, y_0' , on the circle $x_0^2 + y_0^2 = R_0^2$ and with $-\infty < x_0' < \infty, -\infty < y_0' < \infty$ as illustrated in the following figure:

Figure 1:

Since the motion following the primary collimator in the normalized phase plane is circular, the trajectories are described by:

$$x = A_{x0}\cos(\mu_{x0} - \mu_x), \text{ where } A_{x0} = \sqrt{x_0^2 + x_0'^2}$$
 (2)

and similar expressions for the y-phase plane. The phase advances μ_x , μ_y are assumed to have value zero at the primary collimator.

The four dimensional emittance of the particles in the halo produced by the primary collimator is $A = \sqrt{A_{x0}^2 + A_{y0}^2}$ and we shall use the symbol \mathcal{A} to denote the function $(A/R)^2$:

$$\mathcal{A}(\mu_{x0}, \mu_{y0}) = \frac{(x_0/R)^2}{\cos^2 \mu_{x0}} + \frac{(y_0/R)^2}{\cos^2 \mu_{y0}}$$
(3)

3.2 The Halo Emittance Function

The source coordinates x_0, y_0 are assumed constant and both nonzero and we analyze the shape of the surface \mathcal{A} as a function of the variables μ_{x0}, μ_{y0} . The function is always strictly positive and reaches a minimum when the cosine functions are equal to one, i.e. for $\mu_{x0} = 0$, $\mu_{y0} = 0$, with value R_0^2/R^2 which is smaller than 1 by the definition of

the collimator radii. The cosine functions are squared, so \mathcal{A} has periodicities π in both coordinates. We therefore limit our study to the square defined by $-\frac{\pi}{2} < \mu_{x0}, \mu_{y0} < \frac{\pi}{2}$. The surface \mathcal{A} looks like a bowl that is asymptotic to a square chimney, Fig 2 (right).

3.3 The secondary collimator

A secondary collimator is situated at phase advances μ_x , μ_y . The particles that originate from point x_0 , y_0 on the edge of the primary collimator have the following coordinates at the secondary collimator:

$$x = A_{x0}\cos(\mu_{x0} - \mu_x); \quad y = A_{y0}\cos(\mu_{y0} - \mu_y) \tag{4}$$

All particles for which $(x^2 + y^2)/R^2$ is greater than one will be stopped by the collimator. So we define the following function associated with the secondary collimator:

$$C(\mu_{x0}, \mu_{y0}, \mu_x, \mu_y) = \frac{(x_0/R)^2}{\cos^2 \mu_{x0}} \cos^2 (\mu_{x0} - \mu_x) + \frac{(y_0/R)^2}{\cos^2 \mu_{y0}} \cos^2 (\mu_{y0} - \mu_y)$$
 (5)

Particles with C > 1 are stopped by the secondary collimator.

The \mathcal{C} function has the same periodicity and same asymptotes as \mathcal{A} . It is always positive and has only one zero at $\mu_{x0} = \pm \frac{\pi}{2} + \mu_x$, $\mu_{y0} = \pm \frac{\pi}{2} + \mu_y$ where it is tangent to the reference plane (\mathcal{C} =0). The plus sign is used when the μ value is negative.

The function \mathcal{C} looks like a bowl distorted is a non-symmetrical fashion, Fig 2 (right). It is asymptotic to the same square chimney to which \mathcal{A} is asymptotic. The amount of distortion depends on the location of the point μ_x , μ_y . The \mathcal{C} -function is everywhere below the function \mathcal{A} except at the point $\mu_{x0} = \mu_x$, $\mu_{y0} = \mu_y$, where they are tangent.

Figure 2 (a): Functions $\mathcal{A}(\mu_{x0}, \mu_{y0})$ (left) and $\mathcal{C}(\mu_{x0}, \mu_{y0}, \mu_{x1}, \mu_{y1},)$ (right) on the square $-\frac{\pi}{2} < \mu_{x0}, \mu_{y0} < \frac{\pi}{2}$ and in the range 0, 2. An optimum circular collimator location $\mu_x = \mu_y = 0.535$ is the point on the diagonal at which C is tangent to A, i.e. one of the two intersection points of the diagonal and the contour A=1.

Figure 2 (b): Contours A=0.75, 1, 2, 5 (left) and contour C=1 (right).

3.4 Collimation analysis

The functions \mathcal{C} and \mathcal{A} represent two different physical entities: \mathcal{C} is an area in the x-y plane and \mathcal{A} , an emittance in the x-x',y-y' phase space. Since they are defined in the same domain, have the same periodicity and both are dimensionless, we may compare them directly. We recall that $\mathcal{A} > \mathcal{C}$ and construct a cylinder based on the contour $\mathcal{C}=1$ that extends to the \mathcal{A} surface. The maximum value of the intercepted \mathcal{A} function gives the maximum emittance of particles not intercepted by the collimator. To visualize the situation more easily, we will draw contours of the \mathcal{A} function together with the contour $\mathcal{C}=1$, Fig 4. The plot determines the maximum escaping particle emittance – this is the maximum \mathcal{A} -contour value which can be found within the contour $\mathcal{C}=1$. The contour $\mathcal{C}=1$ (Fig. 3, right) is non-symmetrical and tends to be displaced towards the coordinates of the zero of the function \mathcal{C} .

Figures 2 and 3 represent the effect on the halo of a single collimator situated at $\mu_{x1} = \mu_{y1}$. The source coordinates x_0, y_0 are set by the relations $\frac{x_0}{R} = 0.5, \frac{y_0}{R} = 0.7$, which correspond to the value $\frac{R}{R_0} = 0.86$. The collimator is set at the point for which C is tangent to A – this is the solution of $A(\mu, \mu) = 1$, i.e. $\mu = 0.535$.

On Figure 4, along with the collimator positioned at (μ_{x1}, μ_{y1}) , three more collimators

Figure 3: C-contour representing a single circular collimator.

are set at $(-\mu_{x1}, -\mu_{y1}), (\mu_{x1}, -\mu_{y1})$ and $(-\mu_{x1}, \mu_{y1})$. The intersection of the inside portion of all four contours $\mathcal{C}=1$ gives the set of particles escaping the system. The corresponding maximum \mathcal{A} is $\mathcal{A}_{max}=1.3$, so the maximum amplitude of escaping particle is $A_{max}=\sqrt{1.3}~R$.

3.5 Tune split and optimum phase conditions. "Pipe".

Of the four collimators above, two have no phase shift between the x and y plane. The other two have phase split of $\pi/2$ radians. It is clear from the plot that there is definitely a need for creating phase split at certain points of the collimation section. If one of the secondary collimators is omitted the maximum value becomes $\mathcal{A}_{max} > 2$.

The equation A = 1, or:

$$\frac{(x_0/R)^2}{\cos^2 \mu_x} + \frac{(y_0/R)^2}{\cos^2 \mu_y} = 1.$$
 (6)

determines the optimum phase advance program for locating collimators in the following sense: as the number of collimators is increased, their phases approach the curve (6). In the asymptotic case $N = \infty$ all collimator phases satisfy $\mathcal{A} = 1$ and the maximum surviving combined amplitude is A = R (case of a "pipe"). Eqn.(6) is the 2D analogue of the well known phase criterion for collimation in a plane: $\cos \mu = R_0/R$.

Determination of the actual maximum emittance, escaping the secondary collimators must be done by using graphs for each set of coordinates x_0, y_0 . Also in real life jaw-collimators are used instead of circular ones, so we have to replace the $\mathcal{C}=1$ contour by

Figure 4: C-contours representing four circular collimators. A_{max} is defined by the maximum A-contour found inside the overlap area.

jaw-collimator contours $\mathcal{J}=\pm 1$. The jaw-collimator function (for a pair of jaws) is:

$$\mathcal{J}(\mu_{x0}, \mu_{y0}, \mu_x, \mu_y) = \frac{(x_0/R)}{\cos \mu_{x0}} \cos (\mu_{x0} - \mu_x) \cos \alpha + \frac{(y_0/R)}{\cos \mu_{y0}} \cos (\mu_{y0} - \mu_y) \sin \alpha \tag{7}$$

Particles with $-1 > \mathcal{J} > 1$ are stopped by the collimator; α is the angle of rotation of the jaw around the beam axis.

The case of jaws can only be solved by computer simulation, as in DJ. On plots similar to Fig. 4, the curves $\mathcal{J}=\pm 1$ look more distorted than the circular collimator ones, but the basic property remains the same – for a large number of optimized jaws the curves $\mathcal{J}=\pm 1$ enclose tightly the contour of optimum phases $\mathcal{A}=\pm 1$.

Apparently, there are many combinations of contours $\mathcal{J} = \pm 1$ (jaw distributions) which result in the same \mathcal{A}_{max} , i.e. the same maximum amplitude of surviving particles A_{max} .

References

- [1] D.I. Kaltchev et al., Proc PAC97, (Vancouver, 1997) (in print) and CERN LHC Proj.Rep 134,1997.
- [2] D.I. Kaltchev et al., Proc EPAC98, (Stockholm, 1998)

- [3] H. Grote, F.C. Iselin, The MAD Program. User's Reference Manual, CERN/SL/90-13(AP)
- [4] Dobrin Kaltchev and Roger Servranckx, Simple Collimation Scheme Theory, TRI-UMF, UBC, unpublished note.
- [5] T. Risselada, Optical Requirements for an LHC Cleaning insertion with Elliptical Collimators, SL Note 95-67, 1995.

4 Appendix

The flowing MAD script splits all elements in the beam line and then creates an OPTICS file optfilename with the column structure required for DJ:

```
select,flag=optics,range=#s/#e
split,name=some-name,fraction=0.2,range=#s/e
split,name=somename,fraction=0.4,range=#s/e
split,name=somename,fraction=0.6,range=#s/e
split,name=somename,fraction=0.8,range=#s/e
optics,beta0=...,column=name,mux,muy,s,betx,bety,alfx,alfy,dx,dpx
file="optfilename"
return
```

Demo 1

In this example we use the optics from file optics to calculate the maximum escaping halo amplitudes for an on-momentum beam. We have chosen an arbitrary set of 5 secondary pairs of jaws.

The set of sources are located on the tips of an octagon with four pairs of opposing sides at mux = 0.0, 0.001, 0.002 and 0.003. During calculation, the coordinates of the sources are stored in sources.out and the splined twiss function are stored in file twspl.dat.

Let's first list the input file demo1.in:

```
optics
0 0.0 6 7 7.82e-9 0.16
-1 0.00 0.005
1. 0. 0.
4 1 0.
              90.0
                       0.0
                                   4 primary pairs jaws;
       2
              0.0
                       0.01
                                  the sources are tips
              135.000 0.02
                                   of an octagon
       3
       4
              45.000
                       0.03
5 0.001 999 1.e-5
              12.34
                       .12
                                   6 secondary pairs
       1
       2
             123.45
                       .23
                                   jaws with some arbitrary
                       .34
                                   locations and angles
       3
              34 56
       4
             145.67
                       .45
       5
              56.78
                       .56
```

then we run DJ:

```
./dj demo1.in
++++++ Input file is demo1.in
****

++++++ Reading lattice functions from file: optics
Marker BEGCOL is at s= 38.9124 m, mux= .07885
Marker ENDCOL is at s= 359.1120 m, mux= .67305
mux_endcol - mux_begcol = .59420

BEGIN SPLINE using 412 lattice locations
END SPLINE
```

j aw	alfa[deg]	mux	muy	s[m]	s_begcol[m]	betx	bety	eta	eta'	(+)^1/2
prima	ry jaw tal	ole:								
1	90.000	.000	.000	38.912	.000	43.780	319.819	.152	013	. 1527
2	.000	.1000E-01	.1260E-02	41.547	2.634	40.276	345.527	.151	022	. 1527
3	135.000	.2000E-01	.2339E-02	43.979	5.067	37.355	371.342	.149	032	. 1527
4	45.000	.3000E-01	.3292E-02	46.263	7.351	35.512	390.891	.147	041	. 1527

```
input secondary jaw table:
              .1200
                         .1254E-01
                                                                                 .102
                                                                                                     .1527
 1 12.340
                                     68.915
                                                30.002
                                                          59.261
                                                                   327.863
                                                                                         -.113
                         .2743
 2 123.450
               .2300
                                     184.919
                                               146.007
                                                          100.707
                                                                    111.602
                                                                                .006
                                                                                          -.153
                                                                                                     .1527
 3
    34.560
               .3400
                          .3052
                                     216.606
                                               177.694
                                                          24.756
                                                                   239.908
                                                                                -.092
                                                                                          -.122
                                                                                                     .1527
 4 145.670
              . 4500
                         .3170
                                     234.388
                                               195.476
                                                          35.344
                                                                   214.708
                                                                                -.149
                                                                                          -.035
                                                                                                     .1527
    56.780
              .5600
                          .5721
                                     332.081
                                               293.169
                                                         224.049
                                                                    96.185
                                                                                -.137
                                                                                          .068
                                                                                                     .1527
 delta
          A_{max}
                      Ax_max
                                  Ay_max
                                               12.520
   .00000 12.520
                      10.968
                                  11.468
```

and list the sources (notice that only half of the vertices of the octagon are actually used):

Demo 2.

Here A_{max} is minimized for $\delta = 0$ using 5 secondary jaws.

Four independent runs are made. Each run begins with the message "CALL SA with new random input-sec-jaw-table".

The four out-sec-jaw-tables are stored in file out-sec-jaw-tab.

```
#> cat demo2.in
4 0.0 6 7 7.82e-9 0.16
0 0.00 0.005
1. 0. 0.
4 1 0.
               90.0
                         0.0
        2
               0.0
                         0.01
        3
                135.000
                         0.02
                45.000
        4
                         0.03
5 0.05 999 1.e-5
                          .12
               12.34
        1
        2
               123.45
                         . 23
        3
               34.56
                          . 34
        4
               145.67
                         .45
               56.78
#./dj demo2.in
+++++ Input file is demo2.in
 +++++ Reading lattice functions from file: optics
 Marker BEGCOL is at s= 38.9124 m, mux=
 Marker ENDCOL is at s= 359.1120 m, mux=
                                               .67305
 mux_endcol - mux_begcol = .59420
 BEGIN SPLINE using 412 lattice locations
     SPLINE
  jaw alfa[deg]
                                               s_begcol[m] betx
                                                                                                 ( + )^1/2
                                                                      bety
                                                                                        eta'
                  mux
                            muy
                                      s[m]
                                                                                 eta
```

```
primary jaw table:
  1 90.000 .000
                         .000
                                   38.912
                                               .000 43.780 319.819 .152 -.013
                                                                                               . 1527
                                              2.634
                                               2.634 40.276 345.527
5.067 37.355 371.342
7.351 35.512 390.891
     .000
                                   41.547
                                                                           .151 -.022
                                                                                               . 1527
               .1000E-01 .1260E-02
   2
  3 135.000 .2000E-01 .2339E-02
4 45.000 .3000E-01 .3292E-02
                                     43.979
                                                                            .149
                                                                                    -.032
                                                                                               .1527
                                     46.263
                                                                             .147
                                                                                    -.041
                                                                                               .1527
 ______
BEGIN SA minimization of F for delta = .00000
 sec. jaws are generated in mux interval: .05000 < mux < .59420
 ------
 CALL SA with new random input-sec-jaw-table.
 before SA F = .4018535E+02
 output secondary jaw table:
  1 164.040 .2344 .2779
2 94.834 .1952 .1661
                                    187.536 148.623 90.727 120.022
                                                                            .002
                                                                                               . 1527
                                  145.134 106.221 334.187
                                                                35.886
                                                                            .039
                                                                                    - 148
                                                                                               .1527
  3 91.666 .3583
                        .3070
                                  219.361 180.449 23.370 247.483
                                                                            -.106
                                                                                    -.110
                                                                                               .1527
 4 180.000 .3784 .3089
5 27.559 .2296 .2740
after SA F= .1027737E+02
                                    222.279 183.367
                                                       23.092 250.750
                                                                           -.119
                                                                                     -.096
                                                                                               . 1527
                                   184.659 145.746 101.734 110.789
                                                                         . 007
                                                                                    -.153
                                                                                               .1527
  delta A_max Ax_max Ay_max .00000 10.277 8.8889 8.1442
                                            10.277
 CALL SA with new random input-sec-jaw-table.
 before SA F = 1857058E+02
 output secondary jaw table:

      202.966
      164.054
      45.382
      178.300

      212.800
      173.888
      28.523
      223.169

  1 132.974 .2730 .2947
                                                                                               .1527
                                                                           - 035
                                                                                    - 149
                         .3026
  2 23.246
              .3171
                                                                            -.074
                                                                                    -.134
                                                                                               .1527
  3 127.881 .1986
                                   151.639 112.727 285.512 41.557
                         .1931
                                                                            .036
                                                                                    -.148
                                                                                               .1527
  4 77.210 .2089 .2399
5 16.837 .2317 .2758
                                   166.668 127.755 188.758 64.689
                                                                           .027
                                                                                     -.150
                                                                                               .1527
                                  185.989 147.076 96.547 114.993
                                                                           .005
                                                                                    -.153
                                                                                               .1527
 after SA F= .1031126E+02
  delta A_max Ax_max Ay_max .00000 10.311 9.4881 9.9983
   delta A_max
                                             F
                                            10.311
 ______
 CALL SA with new random input-sec-jaw-table.
 before SA F = .2713478E+02
 output secondary jaw table:
  1 144.510 .3040 .3008 210.327 171.414 31.886 211.293 -.063 -.139
                                                                                               .1527
                        .1510
   2 137.645 .1937
                                  141.801 102.889 355.464 34.517
                                                                           .041
                                                                                    -.147
                                                                                               .1527
                        .3016
  3 33.531 .3094
4 89.625 .2199
                                   211.380 172.467
                                                      30.381
                                                                216.305
                                                                            -.067
                                                                                    -.137
                                                                                               .1527
                                             138.668
  4 89.625 .2199 .2627
5 40.216 .1929 .1434
                                                                           .016
                                    177.580
                                                       132.232
                                                                90.256
                                                                                    -.152
                                                                                               .1527
                                   140.157 101.245 363.008 34.395
                                                                           .041 -.147
                                                                                               .1527
 after SA F= .1012693E+02
  delta
         A max
                     Ax max
                             Ау_шел
9.6076
                                 Av max
   .00000 10.127 9.5646
                                             10.127
   -----
 CALL SA with new random input-sec-jaw-table.
 before SA F = .1499972E+02
 output secondary jaw table:
                                 216.972 178.059 24.514 241.095
201.542 162.630 48.601 172.300
  1 13.127 .3424 .3055
                                                                         -.094
                                                                                  -.120
                                                                                               .1527
  2 128.745 .2682
                        . 2935
                                                                           -.030
                                                                                  -.150
                                                                                               . 1527
                        . 2638
                                                                           .015
   3 9.810 .2207
                                  178.247 139.334 129.153 92.057
                                                                                    -.152
                                                                                               .1527
4 76.880 .2189 .2612
5 95.212 .1918 .1317
after SA F= .1018514E+02
                                                                           .017
                                  176.733 137.820 136.208 88.006
                                                                                    - 152
                                                                                               .1527
                         .1317
                                   137.622 98.710 369.730
                                                                34.993
                                                                            .042
                                                                                    -.147
                                                                                               .1527
  delta A_max
                    Ax_max Ay_max
                                            F
  .00000 10.185
                   8.8251 9.3803
                                            10.185
#cat out-object
F = .10277365E+02 Nsjaws= 5 Np = 1
F = .10311263E+02 Nsjaws= 5 Np = 1
F = .10126934E+02 \text{ Nsjaws} = 5 \text{ Np} = 1
F = .10185141E+02 \text{ Nsjaws} = 5 \text{ Np} = 1
```

#cat	out-sec-jaw-tab						
	1	164.03981	. 23435786	.27792855			
	2	94.833532	.19520874	.16613151			
	3	91.665683	. 35828755	.30700599			
	4	180.00000	. 37836497	.30886814			
	5	27.559342	.22959110	.27395700			
	1	132.97439	.27301126	.29474866			
	2	23.246113	.31706893	.30259887			
	3	127.88055	.19856045	.19306965			
	4	77.209527	.20887148	.23987552			
	5	16.836752	.23172702	.27583224			
	1	144.51050	.30399832	.30078420			
	2	137.64465	.19367284	.15099844			
	3	33.530788	. 30938635	.30156891			
	4	89.625403	.21987217	.26268187			
	5	40.216281	.19294479	.14339935			
	1	13.126821	.34235720	.30545071			
	2	128.74525	. 26818137	.29345466			
	3	9.8098208	. 22068384	. 26384579			
	4	76.880022	.21886744	.26116832			
	5	95.211526	.19184440	.13174413			

Demo 3. Here we compute the off-momentum maximum amplitudes for the first of the 5 distribution tables generated in Demo 2. The off-momentum halo is only defined for $\delta < \delta_c \equiv x_0/\eta_0$ (or δ_{max} ; see[1]); η_0 is the normalized dispersion at primary. In DJ, if $\delta > \delta_c$ for some x_0 , then the corresponding source is simply skipped from the loop. If all sources are skipped, then the maximum amplitudes found are zero.

```
#cp out-sec-jaw-tab input-sec-jaw-tab
#cat demo3.in
optics
0 0.0 6 7 7.82e-9 0.16
0 0.001 0.005
1. 0. 0.
4 1 0.
               90.0
                         0.0
       2
               0.0
                         0.01
       3
               135.000
                         0.02
                45.000
                         0.03
-5 0.05 999 1.e-5
                                          !read 5 jaws from file
#./dj demo3.in
+++++ Input file is demo3.in
 +++++ Reading lattice functions from file: optics
 Marker BEGCOL is at s= 38.9124 m, mux=
 Marker ENDCOL is at s= 359.1120 m, mux=
                                                67305
 mux_endcol - mux_begcol = .59420
 BEGIN SPLINE using 412 lattice locations
END SPLINE
 jaw alfa[deg]
                  mux
                            muy
                                      s[m]
                                                s_begcol[m] betx
                                                                       bety
                                                                                  eta
                                                                                          eta,
                                                                                                   ( + )^1/2
 primary jaw table:
  1 90.000
                .000
                            .000
                                       38.912
                                                    .000
                                                            43.780
                                                                    319.819
                                                                                  .152
                                                                                          -.013
                                                                                                      .1527
        .000
               .1000E-01 .1260E-02
                                        41.547
                                                   2.634
                                                            40.276
                                                                    345.527
                                                                                  .151
                                                                                           -.022
                                                                                                      .1527
   3 135.000
                                                                                          -.032
               .2000E-01 .2339E-02
                                       43.979
                                                   5.067
                                                            37.355
                                                                     371.342
                                                                                  .149
                                                                                                      .1527
     45.000
               .3000E-01
                          .3292E-02
                                        46.263
                                                            35.512
                                                                    390.891
                                                                                  . 147
                                                                                                      .1527
                                                   7.351
                                                                                           -.041
 input secondary jaw table:
   1 164.040 .2344
                           .2779
                                      187.536
                                                148.623
                                                            90.727
                                                                    120.022
                                                                                  .002
                                                                                           -.153
                                                                                                      .1527
```

```
94.834
             .1952
                         .1661
                                     145.134
                                                106.221
                                                          334.187
                                                                      35.886
                                                                                   . 039
                                                                                            -.148
                                                                                                        .1527
   91.666
             . 3583
                         .3070
                                     219.361
                                                180.449
                                                            23.370
                                                                     247.483
                                                                                  -.106
                                                                                                        .1527
                                                                                  -.119
  180.000
             .3784
                         .3089
                                     222 279
                                                183.367
                                                            23.092
                                                                     250.750
                                                                                            -.096
                                                                                                        .1527
4
   27.559
             . 2296
                         .2740
                                     184.659
                                                145.746
                                                          101.734
                                                                     110.789
                                                                                   .007
                                                                                            -.153
                                                                                                        .1527
delta
         A max
                     Ax max
                                  Ay_max
 .00000 10.277
                      8.8889
                                  8.1442
                                               10.277
 .00100 9.7834
                     8.0495
                                  8.1442
                                               9.7834
 .00200
         8.9346
                      7.5195
                                  7.6373
                                               8.9346
 .00300
         8.7442
                      7.3660
                                  7.6373
                                               8.7442
 .00400
                       .0000
                                   .0000
                                                .0000
          .0000
 .00500
          .0000
                       .0000
                                    .0000
                                                .0000
```

Demo 4. In the previous example demo3.in, the betatronic parts of particle amplitudes are $A_{max} = 8.74$ $A_{x,max} = 7.37$ at $\delta = 0.003$ (this is close to the edge of the LHC bucket). Here we decrease both these values by carrying minimization at $\delta = 0.003$ with mixed weights.

#cat demo4.in

```
optics
1 0.003
         6 7 7.82e-9 0.16
0.0 0.001 0.005
1. 0. 1.
4 1 0.
                90.0
                          0.0
        2
                0.0
                          0.01
        3
                135.000
                          0.02
        4
                45.000
                          0.03
-5 0.05 999 1.e-5
#./dj demo4.in
 +++++ Input file is demo4.in
 +++++ Reading lattice functions from file: optics
 Marker BEGCOL is at s= 38.9124 m, mux=
                                                .07885
  Marker ENDCOL is at s= 359.1120 m, mux=
                                                .67305
 mux_endcol - mux_begcol = .59420
 BEGIN SPLINE using 412 lattice locations
 END
      SPLINE
 jaw alfa[deg]
                                                s_begcol[m] betx
                                                                                                   ( + )^1/2
                                       s[m]
                                                                       bety
                                                                                  eta
                                                                                          eta,
                             muy
 primary jaw table:
   1
      90.000
                 .000
                            .000
                                        38.912
                                                    .000
                                                            43.780
                                                                     319.819
                                                                                  .152
                                                                                          -.013
                                                                                                      .1527
         .000
                                                   2.634
                                                            40.276
                                                                     345.527
                                                                                  .151
                                                                                           -.022
                                                                                                      .1527
   2
                1000E-01
                           .1260E-02
                                        41.547
   3
      135.000
                .2000E-01
                           .2339E-02
                                        43.979
                                                   5.067
                                                            37.355
                                                                     371.342
                                                                                           -.032
                                                                                                      .1527
                                                                                  .149
      45.000
                .3000E-01
                          .3292E-02
                                        46.263
                                                   7.351
                                                            35.512
                                                                     390.891
                                                                                  .147
                                                                                           -.041
                                                                                                      .1527
 ______
BEGIN SA minimization of F for delta= .300000E-02
 sec. jaws are generated in mux interval: .05000 < mux <
                                                               .59420
 CALL SA with new random input-sec-jaw-table.
 before SA F =
                .5249091E+02
 output secondary jaw table:
   1 177.023
                .3511
                           .3063
                                      218.303
                                                 179.391
                                                            23.775
                                                                     245.040
                                                                                 -.101
                                                                                          -.115
                                                                                                      .1527
  2 150.117
                .4669
                           .3202
                                      238.578
                                                199.666
                                                            44.194
                                                                    194.373
                                                                                 -.152
                                                                                           -.019
                                                                                                      .1527
      23.553
                           .4664
                                      301.009
                                                 262.096
                                                                     32.185
                .5449
                                                           392.026
                                                                                 -.143
                                                                                           . 055
                                                                                                      .1527
      48.773
                .4667
                           .3202
                                      238.536
                                                199.624
                                                            44.097
                                                                    194.571
                                                                                 -.152
                                                                                           -.019
                                                                                                      .1527
                                      341.638
                                                 302.725
      41.774
                .5681
                           .5853
                                                          159.213
                                                                    138.207
                                                                                 -.133
                                                                                            .075
                                                                                                      .1527
 after SA F=
               .7941347E+01
    delta
             A_{max}
                        Ax_{max}
                                     Ay_max
```

.00000	17.409	13.149	14.100	22.402
.00100	13.645	9.3771	10.478	17.204
.00200	6.2075	5.0242	5.5766	8.3446
.00300	5.6539	4.6445	5.5766	7.9413
.00400	.0000	.0000	.0000	.0000
00500	0000	0000	0000	0000