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Abstract but the radiation decays as it propagates through the cloud.

We studv the int . f1h hrot diati The energy losses of the test particle are defined as the
€ study the interaction of the synchrotron radiation, prog, per second done by the breaking force acting on the
duced by a relativistic particle in a bending magnet, wit

. rticle due to electromagnetic field produced by the parti-
the electron cloud present in the same magnet. The clo fi itself: 9 P y P

is described as a collisionless magnetized plasma of very 5& (t)
low, but finite temperature. Expressions are derived for the 5t Ze(v'" - E) @
spectral intensity of synchrotron radiation far from the par-

ticle, which in absence of a cloud reduce to the Schott spe . ) o
P ield produced by the particle at its own positieh and

trum of radiation in vacuum. . . X
e is the electron charge. One can think of the fi&dn

For typical cloud parameters — a rarefied plasma, w . .
fully neglect the refraction and only take into account th ) as the plane monochromatic wave which, far from the
Source (current densityft) = eZv®), coincides with the

damping of the extraordinary and ordinary plasma waves

. , spontaneous synchrotron radiation. By neglecting all ef-
at frequencies near the first electron cyclotron resonan ; . e
g . . ects taking place at the plasma boundary, this wave within
(wave lengths~ mm) via interaction with resonance elec-

trons. This effect would be the strongest in the hypothetitche plgsma splits into two waves = ordinary)(and ex-
case of electron beam and electron cloud, but is found {(r)aordlnary (+) one. Propagation of the two plasma waves

. - " IS described in the so called quasi-linear (geometrical op-
be weaker in the realistic case of positively charged beal L . . )

) . - _1ics) approximation. We realize that the geometrical optics
particle (proton, positron). In the latter case, by takin

Maxwellian velocity distribution of the electrons (r.m.s. Ve_%escnptmn Is not correct within several wavelengths from

locity v, — B.c) and fully neglecting the ordinary wave the source, but it can still be used approximately (as this

(factor 3.), we demonstrate that the dominant effect is cou@s _done in [1]). . . I
It is also assumed that the plasma is stationary in time,

pling of 7- mode of the spontaneous radiation with the ex- ; i .
traordinary plasma wave i.e. it has no unstable (growing with time) modes even

at the (low) frequencies near the electron cyclotron reso-
nance.
1 INTRODUCTION In the limit of zero plasma density, or negligible damp-

ing of the waves at frequency, i.e. k,(w)L <<
The goal of this paper is to study whether synchrotron ra- g quency (@)

diation generated in a LHC bending magnet can signifili ¢ “+“’* ~ 1; whereL is the length traversed by the

cantly affect the electron cloud present within the samggdiation within the plasma andl; are absorption coef-

magnet. We consider the radiation of a relativistic partificiénts, our result should reduce to the usual formula of

cle (also called “test” particle) with rest masg, charge Sch_ott for the spontaneous synchrotron radiation spectrum

+Zle| and energyyMc? (y >> 1) moving along the (asinvacuum). .

central trajectory of a bending magnet (fielt}, radius By expanding the exponent #+ )L ~ 1 — k' (w)L,

p = Mc*Bv/(Zle|By)) in presence of a non-relativistic the correction to the spontaneously radiated power is

electron plasma (electron cloud) surrounding the centrgroportional to —&, (w)L, while the absolute value

trajectory. Since the length of the magnet is much IargG{'jr(w)L, multiplied by the spontaneously radiated power

than the formation length /v, we will assume that the and integrated over and the angles, gives the total power

whole plasma volume is illuminated by the same radiadeposited in the cloud. The latter quantity as considered

tion spectrum and that the size of the electron cloud, boih this work to be an adequate measure for the strength of

transversally and longitudinally with respect to the direcinteraction between synchrotron radiation and plasma.

tion of propagation of the radiation, is much larger than the

radiated wavelength. The two cases — negative() and positive ™, orp™)
Following mainly [1], in Section 2 we compute the spec+adiating particle

tral density of radiation at frequency, generated by the

test particle as it traverses finite volume of cold electron If the test particle is an electron in vacuum, a remote ob-

plasma of very low density. By neglecting two-particle in-server whose radius vector describes an afigiéth the

teractions, the test particle radiates as if itis in a free spaocexternal magnetic fieldd(< =/2 means above the median

here v® is the test particle velocity vectorE is the




plane), sees elliptically polarized spontaneous synchrotrdreavier radiating particles (Iikéf);Pb ions), with mass

radiation wave with electric vectdt rotating in the same M = A x m,, assuming the rigidityH is the same as

direction as the electron ([5]). More precisely, the projecfor protons, the Lorenz factoy is multiplied by Z/A

tion of £ on the median plane rotates in the same directioso they, values for protons are multiplied byA/Z)3.

as the electron. This remains true for both an observer I®ne has: at injectiom( = 189,y, ~ 0.1) and collision

cated above or below the median plane — the polarizatiqy = 2942, 3o ~ 3 x 107%).

changes from left- to right-, or reverse whorossesr/2.

Thus in this casé rotates synchronously with the plasma Estimation of the effect

extraordinary wave, implying stronger interaction. The fraction of power deposited in the cloud relative to to-
If the test patrticle is a positron or proton, then comparethl power radiated can be estimated in the following way.

to the electron case; reverses its orientatiohl — —F, We take: Ny = 10 em™3, A ~ 1 mm, ¢ = 1078,

but still rotates in the same direction as the test particle, i.g9 ~ 10~3 and thickness of the plasma slab= 10 m.

opposite to the electrons of the cloud and synchronouskor Maxwellian plasma, the order of magnitude of the ab-

with the ordinary wave. sorption coefficients is knowrk L ~ %L which should

be multiplied byy, (the center of the absorptlon line) and

by 3. (its width) to get:

q L
E* Yo Be ~1077.

2 CORRECTIONS TO THE
SPONTANEOUS SYNCHROTRON
RADIATION SPECTRUM CAUSED BY
Parameters WAVE ABSORPTION IN THE

ELECTRON CLOUD

projection of E vector of rad. on the median plane

rotates in the same dir. as the radiating particle

L — propagation length of the radiation within the cloud,;

By — external magnetic field;

w and = 2w¢/w — frequency and wavelength of radia-
tion far from the plasma,;

Ny — the number of electrons per cubic cm;

= (47rNe2/mE)1/2 = 5.64 x 10*[s 1] v/No[em 3]

— the electron plasma frequency;

Q. = o = 1.76 x 107[s~ 1By [Gs] — cyclotron fre-

cloud

quency o?tﬁe electrons; 7 % LB,

0 = £2% —cyclotron frequency of the relativistic LHC
particle ¢ >> 1); Figure 1: Left: test particle with velocity vectat L By

n = w/Q, —harmonic number; traversing electron plasma and velocity vectorof an

q = (wp/Qe)* — density parameter; electron of the plasma. Right: coordinate fradee;, ¢2.

ve = /< v? > /3 —the rm.s. thermal velocity of the obtained by rotation of7, €3, €3 around the; axis at an-
electrons in case of Gaussian distribution function: gle —0, so that the direction of propagation of radiation is

. \3/2 . alonge: (k| €2)
fo= o (gme) e @

whereT,, = m.v; = kpT[K]; B =v./c(1/62 =5.11x 2.1 The self-consistent equations describing
10°/T. [eV]); small plasma oscillations and the disper-

rp = ve/wp — the Debye length; sion relation ([1]’ [2]’ [7])

1o — the distance of the electronic gyro-frequency to the
critical frequency of the spontaneous synchrotron radiatiowe mainly follow [1], where the energy losses due to syn-

spectrum: chrotron radiation are studied for a slab of quasi-relativistic
Yo = 200, _ 2 M . 3) uniform electron plasma (the thermo-nuclear reactor). The
30v3 392 Zme electric field within the plasm&, which corresponds to an

external current, or a test particle currgfit, satisfies the
Maxwell equation:

For electron rings|¢| =1, % =1), yo is small:~ v2,

For protons in the LHC{/ = my; e =54x 1074,
Yo << 1 both at injection f = 480, yo = 1/188) 1 82E ) .t
and collision ¢ = 7462, yo = 2 x 107° ). For rot TotEJr*W +5) =50 (4)




where the current densiy’}“bs), caused by the fiel&, de- In the rotated coordinate framg, ¢,, €:
scribes absorption and induced radiation within the plasma. LA 0 0

A test particle traversing the plasma is shown on Fig. 1( 2.2 N Pkl — w2 *0 1-A2 0]
We have chosen the direction of the external fiBlgto be ¢ % —¢ 1 —c"kk = —w 0 0 i
parallel to thez; axis and the radius vectétof the remote
observer to lie in the plang , 5. N =kc/w.

In what follows we use the relativistform of the dielec- For a Maxwellian plasma, the non-relativistic approxi-
tric permittivity tensor (as in [1]; see also [3], [9]) to COM- mation of Q®) near the firs‘E cyclotron resonance is dis-
pute the Fourier components of the relativistic test- particlg ssed in Section 3.
current. The same tensor, but taken in a non-relativistic ap- The dispersion equation of small plasma oscillations is:
proximation, ([2], [4]) will later be used to describe small
oscillations of the electron plasma. A(k) = det R =0. 7

For a particle with mass of redtf and chargey = Ze,

s L For a fixed realv, it can be shown ([1]) that in the limit
the relativistic tensor is:

of rarefied plasma, << w, the dispersion equation (7)
Arg? /d3 f y becomes biquadratic with respectkp so there are only
v -

Q=- two solutions fork?, denoted here by, corresponding
_ to the ordinary and extraordinary waves (refraction index
X w Ol — ﬂal valuesNi = kyc/w). Thus we have in this limit:
w ow v Ou
n:ioc T, (1) A(k) = c*(k* — k3) (K — k). (8)
nim @ — (Ryu/) — @2 2.2 The field propagator

47”1 /d3 (@) u ( 5’f 3f) eses (5) Consider a statistical ensemble (the beam) of test par-
ou 3w ticles with coordinates”, velocitiesv’. One can in-
troduce macroscopic fluctuating-current densipiefsf'),
functions of time and”. To find the field radiated at fre-

L N K b quencyw by a current fluctuatiori(¢, /), one has to invert
o, (6) and then carry out contour integration o¥eand spatial
T,(0) = | =nesg. g0 W)} —iuwd,J, integration over all source<. The result is [1]:*
won 72w, Jl, u?J? E,(r) = / &' W - D7), with
with J,(2) being the Bessel function; z =k, w/(Q); jwelw/er=i(w/e)ir’
W = 2 2
Ar(k3 — k2)

k=kiel + kes (see Fig 1) andv andu denoting the Y © "
= AL e T — X e =T
components of the vectattransverse and parallel 18,. ( + - ) ’

Above f(7) is relativistic distribution function, normal- Fo= 7/r, 9)
ized so that/ d*vf(v) = 1. The argument (notice an .
unusual notation!) denotes the particle momentum d|V|de‘efr(‘e;re the eIements ozethe mattht®) are the cofactors of
by the mass of rest, i.e7 = 3¢y, with v being the usual £ I-€: (R)~! = A®/A andr, denotes a point at the
relativistic factor:y = (1 — 52)71/2 = (140v2/c?)'/2. In plasma_ boundary. _
the non-relativistic casey(— 1), # becomes the particle  1he indices+ and — appear because during the con-

velocity. tour integration the argumehtin )\Efj)(k,w) is substituted
By taking plane monochromatic wavess = With k+, wherek. are the two roots out of four having
raKing matic L . 5 : )
EEw ik —iwt, -(t) _ (t) ¢iFM-ivt (the size of positive imaginary part. The factdgk? k%) in the de

Pmmator appears since, accordlng to @),/dk\k by =
— k%) ~ 22w (k2 — K2).
In the I|m|t wp << w (same as fory)), it can be shown

the plasma vqume is much Iarger than the wavelengths
interest), the Fourier-transform of (4) reads:

RY . E;  =ji¥ that (© _ 5@
B, =il), AD SA© =02 — K (I — i), (10)
R = (2k* — I — Pkk + Q. (6) where in the rotated fram&,, €;,, ¢, shown on Figure 1:
wherel is the unity3 x 3 matrix, R andQ'®) are func- (I —##) = ( (1) (1) > :
tions of realk andw andQ'® is obtained fromQ in (5)
with substituting the electron parametersn., v, , f(¥.), LThis expression for the field has the correct asymptotic-at co. It

Q.. has been assumed valid also in the vicinity of the soufce



If we further takee *+™ — 1, thenW reduces to the vac- To simplify the tensofl’, (v;), we first notice that,, = 0,

uum propagator. hence the elements in the third row and columigfv;)
are zero. The remaining 2x2 part of the tensor, transformed
2.3 The spectral density of radiatic, in the rotated coordinate framg, ¢;, ¢z, is

The power radiated in directioh= 7/r per unit area and
per unit frequency interval is [1] (the bar indicates statisti- T (0;)|z_w;

cal average): 2 2 —
( gt J2cos? 0 L) cos 0 >

> +oo . —inw? 2 2 -
Sw - SL2 dre""E” (F7 t) ' E(Fa t+ 7_) z ‘ JnJ;l cos 6 Wt J/n Ef%f,w
T
—o0 ] .. .
C —————— _ Jzn  Wanlyn _ o oRe
= 2 E_,(7) - Eu(7). (11) - ( —iJwmym j;,n ) = Jn Jn,
We substitute here (9) and notice that the only dependenegéere
on+’ is in the factore?«@/<)*r" g  therefore contains the _— om
expression: Jn = ijyn )’
3 s [T i(w/ )i (77— (16)
dT’/dT / dTeuu‘rezw c)r-(r’'—r )X 0
/ —00 Jen = Jan = %Jn cosf = %Jn cos
= z L
(6)% (7 () (7
J T7t - J T7t+7— ) (12) Q
( ) ( ) = z /%f ctg 0Jn = ¢ ctg 0 Jn;
= 7 . . . w/c
where the advance fromf to »”, during time intervalr, _ o , ,
is along the unperturbed trajectory of the test particle. The Jyn = Jon = wyd 'y = cBryed, a7
above expression (12) (as a function of reglis equal to  gng the argument is
the spectral densityj " j")._. .  of current fluctua-
tions for a plasma in an external magnetic field, [1], [2]. It # = wwsin 0/ () = nwiesin/y, = nfy sinf

is also called non-interacting current correlator. Thus w

, five have replaced with 72 and used that = w cos §/c
obtain forS,,:

andk, = wsinf/c).
We will see (the Schott formula below) that,, andj, ,,
are actually proportional to the ando-component of lin-

i . ear polarization of the electric vector of spontaneous radi-
2.4 The spectral density of test particle currentgion (harmonic:). Thus the electric vector is parallel to

The spectral densityj " (k = #,w), or correlator jn and elliptically polarized (x| # |jo.n|), with direc-
(j(t)*j(t))~ can be obtained either directly, by tion of rotation, left- or right- as given by the signs of the

, k=g w? ) ! components of,,. For anyn, these two components have
Fourier-expanding the unperturbed test-particle motion, %unal sign for) > 0, and opposite signs i — = — 0

by applying the dissipation-fluctuation theorem, [1]’[2]'i.e. the direction of polarization of the-th harmonic is re-

The latter theorem states that it equals the anti-hermiti%rsed If one fixes the frequency seen by the observer to
part of the tenso defined above, but written for an en- 5 rea positive value > 0, then for an observer above the

semble of test particles instead of electrons. Also, accorﬂiedian plan& > 0, which means that positive have to
ing to the same theoren@® should be taken in the limit be taken in the surryw because of théunction. Below the
of vanishing particle-particle interactions, so one has to U$fadian planed — = — 6), Q) is negative and hence neg-

a vanishing imaginary pas — w — i€ Correspondingly,  a4ive , values have to be taken, which leads bgth, and
we replace the parametersm, v, f(¥), Q in (5) with the reversing their signs. k

ones describing an “ensemble” of a single test particle Wit#’ForS we get from (13), (9) and (14) :
chargeZe, massAm, momentunm), relativistic distribu- ¢ ’

c (D) -
Sy = @Sp wt. (J(t) J(t));;:%A -W (13)

7w

tion function f(v!) = §(vi — ;) and cyclotron frequency 2g w?(Ze)? +Z°° 5w — Q) Sp
Q = ZeBy/(Amcy:). The resultis: "Pow = AmcTy2 £ w=n k2 — K22
(j(t)*j(t))ﬁz%f,w _ 1/2[Q(t) _ Q(tH]lE:%f,w = (14 ()\Sf)e_k:” B )\(f)e—kl'rb)+ ()
_ 2m(Ze)? *f 50— nQ) T (). _ (A(e)e_kim _ A<e>e—k’,’n) (18)
7252 et k=%7,w=n’ + -
where use has been made of the formal equality: 2.5 The Schott formula
) 1 Here we derive the spectral densK{ of spontaneous ra-
lim Im—— 8 = —mé(w —nf2).  (15) djation of the test particle (as in vacuum, no cloud), emitted



at angled with respect to the external magnetic field, calledf the order ofl /v

the Schott formula [5].
If the size of the plasma is much smaller than the absorp- YA
P P 1+(C\Z> +...]w50(1+w2)=
0

tion depth ., << 1) then, by taking into account (10), €=¢o
(18) becomes: 1
+o0 =2 (1 + ¢2)
r2g0  — M Z 5(w—nﬂ)(j2 +j2 ) 7 "
@ dmedyp A~ o en ctgh ~ cosf = —.
Y
w?(Ze)? =
= T3 > 8w —nQ)(c*7 ctg® 0 J2(z) By substituting (20) into (19) and integrating over angles
TN oo and frequencies, the total power radiai®y is (herep =
+w}d, 2(2)) = e/
(Z€)2Q2 s 2 [e’e] T
= Tome n=1n2 (CtgzeJnQ(Z) + 600 (z)) 27r/0 dw/o dfsin 6 r?S°(0) =
§(w —nQ), (19) (Ze)’c [T ) x> 2
= 5727 /0 d@sm@rlzln

wherez = nB; sinf. The term withn = 0 does not con-

tribute and the terms with and —n are equal, giving a [Ctg295](12/3 (253/2) + K3 (953/2)} -
factor 2. In (19),r2S° is the the energy/sec, radiated at 3 3

angled with respect to the external magnetic field, per unit  _ iW /OC 2 /+v i

solid angle and per unit frequency interval. 16727 0 v —y

(21)

2 1+ 2 K2: + 1+ 2 2K2 —
2.6 Integration of the Schott spectrum over fre- [0+ U0+ (14 I )

guencies and angles =Wy (é + ;) = W,
We follow the standard integration procedure ([5], [6]) to
obtain the total power radiated by the test particle (fromyhere; — Ly (14932 andW, = §22822c74_ (v is
now on we omit the subscript “t”). For a highly relativistic repjaced with infinity in the upper limit of integration over
such particley >> 1, § ~ 1, the radiation is concentrated ;, hecause thé& functions are nonzero only for argument
near the median plané:~ 7 /2. The ordem of the Bessel of the order of unity).
functions is therefore nearly equal to their argument- The frequency radiated (= n<2), which corresponds
nfsinf ~n and one can use the asymptotic formulas:  maximum of the spontaneous synchrotron radiation spec-

trum is~ (3/2)Qy* meaning that the expression under the

1/2 . SNOPT . .
Ja(2) = LKW (ﬁ 53/2) 7 integral sign in (21), as a function gf= %Q%S reaches its
/3 3 maximum aty ~ 1.
J(z) = LKQ/g (ﬁ 53/2) 7 (20) The = mode (first term) is radiated in directions above
/3 3 and below the median plane and becomes zero in the plane

(the factor)?). For thec mode, the radiation is centered in

— 2 2 2 a2 H . . . . . .
wheres = 1—2%/n* =1-3%sin"0 << 1. Wewillonly  he median plane and its total contribution is 7 times larger.
need the above expressions for large harmonics> 1,

where the sum over can be replaced by an integral, which

is done by the following transformation from 6 to new 3 ESTIMATION OF THE ABSORBED

variablesy, v: POWER FOR A MAXWELLIAN
5 CLOUD
_ ) _ 2 3.
V= ycost; y=3mo 3.1 Wave absorption at frequencies near the
dip = ~ d cos 0; dy = g Ay (dn = 1); first cyclotron resonance

We consider a rarefied plasma<< 1 with electronic tem-
peraturel, ~ 100 eV (8. = v./c ~ 0.01). We assume

Here y measures the relative distance to the critical hafhat: 2 1

monic%y3 (nearly equal to the spectrum maximum), while (ﬁ) — = 2q <<1 (22)

1) measures the angle between the direction vector of prop- w/ B m2Be

agation of the radiation and the horizontal plane (in units dé fulfilled for all harmonicsn of w = n ., even at the
1/4). In the arguments ok, ¢ is expanded over the small cyclotron resonance = 1. For frequencies in the vicinity
quantitiescos § andy/c, = 1/~ and by keeping only terms of the first cyclotron resonance, the dielectric tensor (5) has

-y < Y <7 0<y < oo.




the form ([2], [7]):

~44+0 Ytic 0

RQ=|t-ic —%+0 0 (0 >>q)
0 0 —q
2
O K
7= Z\/gaﬂﬂe cos @ wiz),
R

(st

wiz) = e (|cos€|+\/77 o W)
(23)

which can also be written as:

Sp ALY = F(1 4 cos?0), (29)

T V14 cos20 T V1+cos26

Thus the columns ok(ie) are proportional to the compo-

nents of the electric field vectoréi of the two eigen-
solutions called extraordinary (+) and ordinary) (plasma

AY =eaer spald;

where the eigen-vectoese:

where w(z) is the probability integral (error function of Waves. The extraordinary wave electric field vedtor is

complex argument).

parallel toe’, and rotates in the same direction as the elec-

In more details, for Maxwellian distribution, the n-th trons.

member of the sum in Gy = +£1 £ 2...) is propor-

. 2 . —
tional to e=*» with z, %ﬁie' As w approaches

||, the contribution to the tensor of the member (term

with n = 1 is the largest since =i ~ 1. This term is is

caused by “normal Doppler effect”, i.e. presence of elec-

trons rotating in the same direction as thidharmonic and

with velocities nearly equal to its phase velocity (for which
w— Q| = (u/c) wcosb). For the other members of the

sum, including the one with = —1, produced by a har-
monic rotating opposite to the electrons,,| >> 1, so

It can be shown [2], that (29) is always fulfilled for nearly
transparent media (when the anti-hermitian paritbis
fmall compared to its hermitian part) .

One can also check directly that (10) is indeed fulfilled:

1AL A AL A g 31)
w2 N2-N2 (k2 -k2) \ 01 )"

3.2 Estimation of the absorbed power

The rootsk and the cofactord . are found in the previ-

their contribution is exponentially small (their total contri-0us section. By using some properties\af:
bution is~ ¢). The picture is the same for higher reso-

nances witho,, | rapidly decreasing (roughly dgn!).
By keeping only the resonaneeterms, the tensap be-

comes 2-dimensional and after transforming itinto to frame

€z, €y, €, and substituting it into (6), one gets:

N2 —1+4+0cos?h iocos
R =2 . (29)
—io cosf N2—1+4o0o
where
N =kejw.
The determinant isN+. = kic/w):
A:w4(/\/'2—,/\/i)(,/\/2—/\/?)7 (25)
where the rootare:
N2 =1; N2 =1-0(1+cos’0). (26)

As expected, in our approximation the ordinary wave prop-

agates as in vacuum. The matric)ﬁ) are computed by
takingA\(®) = (R(®))~! A and substituting ther&/,. from
(26). Theresultis:

2 .
() o [—cos”8 —icosf
At _w0< icosf -1 )’ (27)
(e _ 2 1 —icosf
AL =wlo (z cos  cos?0 > ’ (28)

Ar Az =0

AT 9 cos? 6 icosd
wio? = (14 cos 0)< —tcosf 1 ) ’
AT 1 —idcosf

wio? icosf cos?d

= (1 +cos®0) (

).

and also the spectral density (16) of the test particle current
jn, (18) is transformed as follows:

29 _w?(Ze)? 2R 5w —nQ)
B e I S

Fadioliad

O N e N

- JIn Jn
_w?(Ze)? f d(w — nQ) "
432 L= 1+cos?f
x [(jﬂ,n co8 0 + jo n)? €724
+(j7r,n - ja,n CcOos '9)2 672]"_”
(32)

We will interpret (32), integrated over real and positive fre-
guenciesv and angle® < 6 < , as the energy per sec-
ond radiated by amlectronin presence oélectronplasma.

If the beam particle and particles of the cloud has opposite
sign, then the roles of ordinary extraordinary waves are re-
versed and correspondingly one has to exchange the indices
+ and— of & in the two exponents.



With this in mind, we substitute; with the propaga- other. The factot / cos6 in k+ is canceled and both modes
tion IengthL within the cloud and expand the exponentgarticipate with a factocos9 ~ v~!. The absorption oc-
o=KL L 1 2k’ L. This can only be done for small opti- curs away from the median plane (zero in the plane). For
cal deptht’/ L ~ 229 << 1, which is true for, ~ 0.01 this case the integration is carried out below.

e A
and the parameters in Table 1. The unity produces the spon- We take only the second term in (33) and integrate over

taneous spectrum (19) while the termgkiL with their angles and frequencies, same as this was done for (21)

signs inverted yield: (hereWoyo = vQ./p):
o0 oo sy Z 2 QQ L
w?(Ze)? < d(w—nQ) 1, . P 277/ dw/ dOsin 6 x VT (Ze)* QF g y
2me3y? 1+cos26 [(jw’” cos 0+ Jon)” kL 442 pcBe

2 7( w—|Qe| )2
e V2wfBe cos 0 —

+(Jrn = Jon cosf)? k;L} (33) X Z n| cos 6| <

where the upper sign applies if a negatively charged beam ﬁ 1 /3\*q qL
travels through the electron cloud, and the lower sign refers Qﬁﬁ
to a positive beam charge as in the LHC, and

[e’e] “+v
X / ydy dipipx
0 0

2 2 )
X [v1+¢2K1/3(77) 714;1ﬁ K2/3(77)] e * ~

j‘n’,n = cyctg 0 Jn; ja,n = C’V‘];w

wL

k. (w,0)L =5, mNY = o,
4/3
L[k Lo, =03 L Wosi”
4V 2 w Bec  cosf (35)
_(—e=12el )2 L
% e (ﬁwcmse) NL; (34) where
BeA
Q-9Q —
z gL (el = Y00
k_(w,G)LNTe (ﬁwdeww) V2n QB cosb V2 yBetp [y
( where A\ =27¢/w; w = n = Q). — w% (1 — yo> , (36)
. "o, . " H y
Sincek_ is 3. times smaller thak , we only show its order 20

of magnitude. It is easy to compute it, if thgerms inQ A=V2B./v, yo= 30,5
are kept, [2].

We choose the cyclotron frequency of the test particle to Thus we have neglected the term with /3, because of
be positive for an observer above the median plane 0.  the factor1/y and have only estimated the terk, /3 (m
Sincew > 0, only positiven contribute. For each, there  mode) in the following way (confirmed with direct numer-
are two contributions — scalar products (squared) betwegtal integration fory up to 300):

]7, and the unit vectorg, ande_ of the counterclockwise
and clockwise rotating plasma waves. Thus the elliptically
polarized synchrotron radiation wave interacts with both
extraordinary and ordinary plasma modes. This is because ) ) o 37
the elliptical polarization can be decomposed into a left-  ~ yoA/ dpyp=(1 + %) Ki3(m0) ~ 37
and right- circular polarizations. T 0 13

1) In the hypothetic case — theﬂtest particle being an elec- ~ /3 21/3 ['(2/3) Ay,
tron in electron cloud, the current has counterclockwise
polarization? and an observer located above the mediatheren, = L L (14 ?)3/2).
plane ¢cosf > 0), sees counterclockwise rotating bothwe have used the following integral:
beam and plasma electrons.

By settingk” = 0 (taking only the first term), and notic- / oo
ing thatn, cos ¥, j, , andj, , are all positive, we see that

+y )
/ydy/ (1 + 62 K2 5(n) e ~

dpyp® (1 4+ 92 K3 j3(m0) =

—0o0

the contributions frons andr modes add up (stronger ab- . o0
sorption). =7 [/ Ks/3(z)dx + Kz/:s(yo)] ~
2) For a proton or positron in an electron cloud, by set- Yo Lyo
ting k&~ = 0 (taking only the second term), the contribu- o, _™ [ 3 223 1(5/3) yg 2/° — 2713 T(2/3) y 2/3] —
tions from theos and = modes partially compensate each \f yo

- . —5/3
2meaning thatj. . and j,» have the same sign, so the vector = \/§21/3 r'e /3)
( zgg ) = Re Lem rotates counterclockwise (38)



K, (o) =2 'T(v) g ¥ (yo << 1). — for the case of LHC, both the absorbed power and the
effect on the radiated spectrum are negligible.

Our estimations are based on a collisionless plasma
model for the cloud, typical (LHC) density and tempera-
AW Qe 43 L 4 . L
W ~03—qLy, = 3 qyy - ture parameters, and Maxwellian velocity distribution of

0 ¢ the electrons.

According to (35), the fraction of deposited energy is

This expression scales with the beam energy a&?. If K led ltchev | ful h
the propagation length within the cloutl is fixed, it is AcknowledgmentsD. Kaltchev is grateful to the AP

inversely proportional to the magnetic fielt}. If L varies group at CERN for its hospitality, to F. Ruggiero for the

according toL ~ p/~, then the dependence is stronger.s'“'pport of this work, and to his former supervisor E. Perel-
tein.
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4 SUMMARY AND CONCLUSIONS

An expression (corrected Schott formula) has been derived
for the synchrotron radiation spectrum produced by a rela-
tivistic particle, which traverses a large (w.r.t. the wave-
length) volume of magnetized plasma (electron cloud in
accelerator bending magnet). We have estimated the frac-
tion of absorbed power at frequencies near the first cy-
clotron resonance due to the presence of resonance elec-
trons (Cherenkov resonance). We found that:

— the absorption would have been stronger in case of an
electron traversing an electron cloud, since in such case
the strongewr mode of linear-polarization components of
spontaneous radiation decays as (couples with) the extraor-
dinary wave;

— for the realistic case of positively charged beam parti-
cle, the absorption occurs away from the median plane and
is caused by coupling between thenode and the extraor-
dinary wave;



