
Appendix S

Mathematica Realization of TPSA
and Taylor Map Computation

S.1 Background

The forward integration method (Section 10.12.4) for computing Taylor maps can be im-
plemented by a code employing the tools of automatic differentiation (AD) described by
Neidinger [1].1 In this approach arrays of Taylor coefficients of various functions are referred
to as AD variables or pyramids since, as will be seen, they have a hyper-pyramidal structure.
Generally the first entry in the array will be the value of the function about some expansion
point, and the remaining entries will be the higher-order Taylor coefficients about the expan-
sion point and truncated beyond some specified order. Such truncated Taylor expansions
are also commonly called jets. Recall Section 7.5.

In our application elements in these arrays will be addressed and manipulated with the
aid of scalar indices associated with look-up tables generated at run time. We have also
replaced the original APL implementation of Neidinger with a code written in the language
of Mathematica (Version 6, or 7) [2,3]. Where necessary, for those unfamiliar with the details
of Mathematica, we will explain the consequences of various Mathematica commands. Recall
that we wish to integrate equations of the form

ża = fa(z, t), a = 1, m (S.1.1)

and their associated complete variational equations. The inputs to the code are the right
sides (RS) of (1.1). Other input parameters are the number of variables m, the desired order
of the Taylor map p, and the initial conditions (zd

a)
i for the design solution.

Various AD tools for describing and manipulating pyramids are outlined in Section S.2.
There we show how pyramid operations are encoded in the case of polynomial RS, as needed,
for example, for the Duffing equation. For brevity, we omit the cases of rational, fractional
power, and transcendental RS. These cases can also be handled using various methods based
on functional identities and known Taylor coefficients, or the differential equations that such

1Some authors refer to AD as truncated power series algebra (TPSA) since AD algorithms arise from
manipulating multivariable truncated power series. Other authors refer to AD as Differential Algebra (DA).
There is a substantial literature on this subject. See the Web site http://www.autodiff.org/.

1891

1892
S. MATHEMATICA REALIZATION OF TPSA

AND TAYLOR MAP COMPUTATION

functions obey along with certain recursion relations [1]. In Section S.3, based on the work of
Section S.2, we in effect obtain and integrate numerically the complete variational equations
(10.12.36) in pyramid form, i.e. valid for any map order and any number of variables. Section
S.4 treats the specific case of the Duffing equation. A final Section S.5 describes in more
detail the relation between integrating equations for pyramids and the complete variational
equations.

S.2 AD Tools

This section describes how arithmetic expressions representing fa(z, t), the right sides of
(1.1) where z denotes the dependent variables, are replaced with expressions for arrays
(pyramids) of Taylor coefficients. These pyramids in turn constitute the input to our code.
Such an ad-hoc replacement, according to the problem at hand, as opposed to operator
overloading where the kind of operation depends on the type of its argument, is also the
approach taken in [1,4,5].

Let u, v, w be general arithmetic expressions, i.e. scalar-valued functions of z. They
contain various arithmetic operations such as addition/subtraction (±), multiplication (∗),
and raising to a power (∧). (They may also entail the computation of various transcendental
functions such as the sine function, etc. However, as stated earlier, for simplicity we will
omit these cases.) The arguments of these operations may be a constant, a single variable
or multiple variables za, or even some other expression. The idea of AD is to redefine the
arithmetic operations in such a way (see Definition 1), that all functions u, v, w can be
consistently replaced with the arrays of coefficients of their Taylor expansions. For example,
by redefining the usual product of numbers (∗) and introducing the pyramid operation PROD,
u ∗ v is replaced with PROD[U,V].

We use upper typewriter font for pyramids (U,V,...) and for operations on pyramids
(PROD, POW, ...). Everywhere, equalities written in typewriter fonts have equivalent Math-
ematica expressions. That is, they have associated realizations in Mathematica and directly
correspond to various operations and commands in Mathematica. In effect, our code oper-
ates entirely on pyramids. However, as we will see, any pyramid expression contains, as its
first entry, its usual arithmetic counterpart.

We begin with a description of our method of monomial labeling. In brief, we list all
monomials in a polynomial in some sequence, and label them by where they occur in the list.
Next follow Definition 1 and the recipes for encoding operations on pyramids. Subsequently,
by using Definition 2, which simply states the rule by which an arithmetic expression is
replaced with its pyramid counterpart, we show how a general expression can be encoded
by using only the pyramids of a constant and those of the various variables involved.

S.2.1 Labeling Scheme

A monomial Gj(z) in m variables is of the form

Gj(z) = (z1)
j1(z2)

j2 · · · (zm)jm . (S.2.1)

S.2. AD TOOLS 1893

Here we have introduced an exponent vector j by the rule

j = (j1, j2, · · · jm). (S.2.2)

Evidently j is an m-tuple of non-negative integers. The degree of Gj(z), denoted by |j|, is
given by the sum of exponents,

|j| = j1 + j2 + · · ·+ jm. (S.2.3)

The set of all exponents for monomials in m variables with degree less than or equal to p
will be denoted by Γp

m,
Γp

m = {j | |j| ≤ p}. (S.2.4)

According to Section 32.1, this set has L(m, p) entries with L(m, p) given by a binomial
coefficient,

L(m, p) = S0(m, p) =

(
p + m

p

)

. (S.2.5)

With this notation, a Taylor series expansion (about the origin) of a scalar-valued function
u of m variables z = (z1, z2, . . . zm), truncated beyond terms of degree p, can be written in
the form

u(z) =
∑

j ∈ Γp
m

U(j) Gj(z). (S.2.6)

Assuming that m and p are fixed input variables, we will often simply write Γ and L. Here,
for now, U simply denotes an array of numerical coefficients. When employed in code that
has symbolic manipulation capabilities, each U(j) may also be a symbolic quantity.

To proceed, what is needed is some way of listing monomials systematically. With such a
list, as described in Subsections 32.3.3 and 32.3.4, we may assign a label r to each monomial
based on where it appears in the list. We will use a variant of modified glex sequencing, the
only change being that we will begin the list with the monomial of degree 0. For example,
Table 2.1 shows a list of monomials in three variables. As one goes down the list, first the
monomial of degree D = 0 appears, then the monomials of degree D = 1, etc. Within
each group of monomials of fixed degree the individual monomials appear in descending lex
order. Note that Table 2.1 is similar to Table 32.2.4 except that it begins with the monomial
of degree 0. Other possible listings include ascending true glex order in which monomials
appear in ascending lex order within each group of degree D, and lex order for the whole
monomial list as in [1].

1894
S. MATHEMATICA REALIZATION OF TPSA

AND TAYLOR MAP COMPUTATION

Table S.2.1: A labeling scheme for monomials in three variables.

r j1 j2 j3 D
1 0 0 0 0
2 1 0 0 1
3 0 1 0 1
4 0 0 1 1
5 2 0 0 2
6 1 1 0 2
7 1 0 1 2
8 0 2 0 2
9 0 1 1 2
10 0 0 2 2
11 3 0 0 3
12 2 1 0 3
13 2 0 1 3
14 1 2 0 3
15 1 1 1 3
16 1 0 2 3
17 0 3 0 3
18 0 2 1 3
19 0 1 2 3
20 0 0 3 3
.
.
.

28 1 2 1 4
.
.
.

With the aid of the scalar index r the relation (2.6) can be rewritten in the form

u(z) =

L(m,p)
∑

r=1

U(r)Gr(z), (S.2.7)

because (by construction and with fixed m) for each positive integer r there is a unique
exponent j(r), and for each j there is a unique r. Here U may be viewed as a vector with
entries U(r), and Gr(z) denotes Gj(r)(z).

Consider, in an m-dimensional space, the points defined by the heads of the vectors
j ∈ Γp

m. See (2.4). Figure 2.1 displays them in the case m = 3 and p = 4. Evidently they
form a grid that lies on the surface and interior of what can be viewed as an m-dimensional
pyramid in m-dimensional space. At each grid point there is an associated coefficient U(r).

S.2. AD TOOLS 1895

Because of its association with this pyramidal structure, we will refer to the entire set of
coefficients in (2.6) or (2.7) as the pyramid U of u(z).

01234
j1

01234

j2

0

1

2

3

4

j3

Figure S.2.1: A grid of points representing the set Γ4
3. For future reference a subset of Γ4

3,
called a box, is shown in blue.

S.2.2 Implementation of Labeling Scheme

We have seen that use of modified glex sequencing, for any specified number of variables
m, provides a labeling rule such that for each positive integer r there is a unique exponent
j(r), and for each j there is a unique r. That is, there is a invertible function r(j) that
provides a 1-to-1 correspondence between the positive integers and the exponent vectors j.
To proceed further, it would be useful to have this function and its inverse in more explicit
form.

From the work of Subsection 32.2.6, we already know a formula for r(j) based on the
Giorgilli formula (32.2.15),

r(j) = r(j1, · · · jm) = 1 + i(j1, · · · jm). (S.2.8)

Below is simple Mathematica code that implements this formula (which we call Gfor) in
the case of three variables, and evaluates it for selected exponents j. Observe that these

1896
S. MATHEMATICA REALIZATION OF TPSA

AND TAYLOR MAP COMPUTATION

evaluations agree with results in Table 2.1.

Gfor[j1 , j2 , j3] := (

s1 = j3; s2 = 1 + j3 + j2; s3 = 2 + j3 + j2 + j1;

t1 = Binomial[s1, 1]; t2 = Binomial[s2, 2]; t3 = Binomial[s3, 3];

r = 1 + t1 + t2 + t3; r

)

Gfor[0, 0, 0]

Gfor[1, 0, 0]

Gfor[2, 0, 1]

Gfor[1, 2, 1]

1

2

13

28 (S.2.9)

For the inverse relation we have found it convenient to introduce a rectangular matrix
associated with the set Γp

m. By abuse of notation, it will also be called Γ. It has L(m, p)
rows and m columns with entries

Γr,a = ja(r). (S.2.10)

For example, looking a Table 2.1, we see (when m = 3) that Γ1,1 = 0 and Γ17,2 = 3. Indeed,
if the first and last columns of Table 2.1 are removed, what remains (when m = 3) is the
matrix Γr,a. In the language of Subsection 32.2.9, Γ is a look up table that, given r, produces
the associated j. In our Mathematica implementation Γ is the matrix GAMMA with elements
GAMMA[[r, a]].

The matrix GAMMA is constructed using the Mathematica code illustrated below,

Needs["Combinatorica‘"];

m = 3; p = 4;

GAMMA = Compositions[0, m];

Do[GAMMA = Join[GAMMA, Reverse[Compositions[d, m]]], {d, 1, p, 1}];
L = Length[GAMMA]

r = 17; a = 2;

GAMMA[[r]]

GAMMA[[r, a]]

35

{0, 3, 0}
3 (S.2.11)

It employs the Mathematica commands Compositions, Reverse, and Join.
We will now describe the ingredients of this code and illustrate the function of each:

S.2. AD TOOLS 1897

• The command Needs["Combinatorica‘"]; loads a combinatorial package.

• The command Compositions[i, m] produces, as a list of arrays (a rectangular array),
all compositions (under addition) of the integer i into m integer parts. Further-
more, the compositions appear in ascending lex order. For example, the command
Compositions[0, 3] produces the single row

0 0 0 (S.2.12)

As a second example, the command Compositions[1, 3] produces the rectangular array

0 0 1

0 1 0

1 0 0 (S.2.13)

As a third example, the command Compositions[2, 3] produces the rectangular array

0 0 2

0 1 1

0 2 0

1 0 1

1 1 0

2 0 0 (S.2.14)

• The command Reverse acts on the list of arrays, and reverses the order of the list
while leaving the arrays intact. For example, the nested sequence of commands
Reverse[Compositions[1, 3]] produces the rectangular array

1 0 0

0 1 0

0 0 1 (S.2.15)

As a second example, the nested sequence of commands Reverse[Compositions[2, 3]]
produces the rectangular array

2 0 0

1 1 0

1 0 1

0 2 0

0 1 1

0 0 2 (S.2.16)

Now the compositions appear in descending lex order.

1898
S. MATHEMATICA REALIZATION OF TPSA

AND TAYLOR MAP COMPUTATION

• Look, for example, at Table 2.1. We see that the exponents ja for the r = 1 entry
are those appearing in (2.12). Next, exponents for the r = 2 through r = 4 entries
are those appearing in (2.15). Following them, the exponents for the r = 5 through
r = 10 entries, are those appearing in (2.16), etc. Evidently, to produce the exponent
list of Table 2.1, what we must do is successively join various lists. That is what the
Mathematica command Join accomplishes.

We are now ready to describe how GAMMA is constructed:

• The second line in (2.11) sets the values of m and p. They are assigned the values
m = 3 and p = 4 for this example, which will construct GAMMA for the case of Table
2.1. The third line in (2.11) initially sets GAMMA to a row of m zeroes. The fourth line
is a Do loop that successively redefines GAMMA by generating and joining to it successive
descending lex order compositions. The net result is the exponent list of Table 2.1.

• The quantity L = L(m, p) is obtained by applying the Mathematica command Length
to the the rectangular array GAMMA.

• The last 6 lines of (2.11) illustrate that L is computed properly and that the command
GAMMA[[r, a]] accesses the array GAMMA in the desired fashion. Specifically, in this exam-
ple, we find from (2.5) that L(3, 4) = 35 in agreement with the Mathematica output
for L. Moreover, GAMMA[[17]] produces the exponent array {0, 3, 0}, in agreement with
the r = 17 entry in Table 2.1, and GAMMA[[17, 2]] produces Γ17,2 = 3, as expected.

S.2.3 Pyramid Operations: General Procedure

Here we derive the pyramid operations in terms of j-vectors by using the ordering previously
described, and provide scripts to encode them in the r-representation (2.7).

Definition 1. Suppose that w(z) arises from carrying out various arithmetic operations on
u(z) and v(z), and the associated pyramids U and V are known. The corresponding pyramid
operation on U and V is so defined that it yields the pyramid W of w(z).

Here we assume that u, v, w are polynomials such as (2.6).

S.2.4 Pyramid Operations: Scalar Multiplication and Addition

We begin with the operations of scalar multiplication and addition, which are easy to define
and implement. If

w(z) = c u(z), (S.2.17)

then
W(r) = c U(r), (S.2.18)

and we write
W = c U. (S.2.19)

If
w(z) = u(z) + v(z), (S.2.20)

S.2. AD TOOLS 1899

then
W(r) = U(r) + V(r), (S.2.21)

and we write
W = U + V. (S.2.22)

In both cases all operations are performed coordinate-wise (as for vectors).
Implementation of scalar multiplication and vector addition is easy in Mathematica be-

cause, as the example below illustrates, it has built in vector routines. There we define two
vectors, multiply them by scalars, and add the resulting vectors.

Unprotect[V];

U = {1, 2, 3};
V = {4, 5, 6};
W = .1U + .2V

{.9, 1.2, 1.5} (S.2.23)

Since V is a “protected” symbol in the Mathematica language, and, for purposes of illustra-
tion, we wish to use it as an ordinary vector variable, it must first be unprotected as in line
1 above. The last line shows that the Mathematica output is indeed the desired result.

S.2.5 Pyramid Operations: Background for Polynomial Multipli-
cation

The operation of polynomial multiplication is more involved. Now we have the relation

w(z) = u(z) ∗ v(z), (S.2.24)

and we want to encode
W = PROD[U, V]. (S.2.25)

Shown below is Mathematica code that implements this operation,

PROD[U , V] := Table[U[[B[[k]]]] · V[[Brev[[k]]]], {k, 1, L, 1}]; (S.2.26)

Our next task is to describe and explain the ingredients in (2.26).
Let us write u(z) in the form (2.6), but with a change of dummy indices, so that it has

the representation
u(z) =

∑

i ∈ Γp
m

U(i) Gi(z). (S.2.27)

Similarly, write v(z) in the form

v(z) =
∑

j ∈ Γp
m

V(j) Gj(z). (S.2.28)

Then, according to Leibniz, there is the result

u(z) ∗ v(z) =
∑

i ∈ Γp
m

∑

j ∈ Γp
m

U(i)V(j)Gi(z) ∗ Gj(z). (S.2.29)

1900
S. MATHEMATICA REALIZATION OF TPSA

AND TAYLOR MAP COMPUTATION

From (2.1) we observe that

Gi(z) ∗ Gj(z) = (z1)
i1(z2)

i2 · · · (zm)im ∗ (z1)
j1(z2)

j2 · · · (zm)jm

= (z1)
i1+j1(z2)

i2+j2 · · · (zm)im+jm = Gi+j(z). (S.2.30)

Therefore, we may also write

u(z) ∗ v(z) =
∑

i ∈ Γp
m

∑

j ∈ Γp
m

U(i)V(j)Gi+j(z). (S.2.31)

Now we see that there are two complications. First, there may be terms on the right side of
(2.31) whose degree is higher than p and therefore need not be computed. Second, there are
generally many terms on the right side of (2.31) that contribute to a given monomial term
in w(z) = u(z) ∗ v(z). Suppose we write

w(z) =
∑

k

W(k) Gk(z). (S.2.32)

Upon comparing (2.31) and (2.32) we conclude that

W(k) =
∑

i+j=k

U(i)V(j) =
∑

j≤k

U(k − j)V(j). (S.2.33)

Here, by j ≤ k, we mean that the sum ranges over all j such that ja ≤ ka for all a ∈ [1, m].
That is,

j ≤ k ⇔ ja ≤ ka for all a ∈ [1, m]. (S.2.34)

Evidently, to implement the relation (2.33) in terms of r labels, we need to describe the
exponent relation j ≤ k in terms of r labels. Suppose k is some exponent vector with label
r(k) as, for example, in Table 2.1. Introduce the notation

k = r(k). (S.2.35)

This notation may be somewhat confusing because k is not the norm of the vector k, but
rather the label associated with k. However, this notation is very convenient. Now, given a
label k, we can find k. Indeed, from (2.10), we have the result

ka = Γk,a. (S.2.36)

Having found k, we define a set of exponents Bk by the rule

Bk = {j|j ≤ k}. (S.2.37)

This set of exponents is called the kth box. Note that the heads of the vectors j that satisfy
(2.37) for some fixed vector k do indeed lie within some hyper-rectangular volume (box).
For example (when m = 3), suppose k = 28. Then we see from Table 2.1 that k = (1, 2, 1).
Table 2.2 lists, in modified glex order, all the vectors in B28, i.e. all vectors j such that

S.2. AD TOOLS 1901

Table S.2.2: The vectors in B28 = {j|j ≤ (1, 2, 1)}.

r j1 j2 j3 D
1 0 0 0 0
2 1 0 0 1
3 0 1 0 1
4 0 0 1 1
6 1 1 0 2
7 1 0 1 2
8 0 2 0 2
9 0 1 1 2
14 1 2 0 3
15 1 1 1 3
18 0 2 1 3
28 1 2 1 4

j ≤ (1, 2, 1). These are the vectors whose heads are shown in blue in Figure 2.1. Finally,
with this notation, we can rewrite (2.33) in the form

W(k) =
∑

j∈Bk

U(k − j)V(j). (S.2.38)

What can be said about the vectors (k − j) as j ranges over B!? Table 2.3 lists, for
example, the vectors j ∈ B28 and the associated vectors i with i = (k − j). Also listed are
the labels r(j) and r(i). Compare columns 2,3,4, which specify the j ∈ B28, with columns
5,6,7, which specify the associated i vectors. We see that every vector that appears in the
j list also occurs somewhere in the i list, and vice versa. This to be expected because the
operation of multiplication is commutative: we can also write (2.33) in the form

W(k) =
∑

j∈Bk

U(j)V(k − j). (S.2.39)

We also observe the more remarkable feature that the two lists are reverses of each other:
running down the j list gives the same vectors as running up the i list, and vice versa. This
feature is a consequence of our ordering procedure.

As indicated earlier, what we really want is a version of (2.33) that involves labels instead
of exponent vectors. Looking at Table 2.3, we see that this is easily done. We may equally
well think of Bk as containing a collection of labels r(j), and we may introduce a reversed
array Brevk of complementary labels rc(j) where

rc(j) = r(i). (S.2.40)

That is, for example, B28 would consist of the first column of Table 2.3 and Brev28 would
consist of the last column of Table 2.3. Finally, we have already introduced k as being the

1902
S. MATHEMATICA REALIZATION OF TPSA

AND TAYLOR MAP COMPUTATION

label associated with k. We these understandings in mind, we may rewrite (2.33) in the
label form

W(k) =
∑

r∈Bk

U(rc)V(r) =
∑

r∈Bk

U(r)V(rc). (S.2.41)

This is the rule W = PROD[U, V] for multiplying pyramids. In the language of Section 32.7,
Bk and Brevk, when taken together, provide a look back table that, given k, look back to
find all monomial pairs with labels r, rc which produce, when multiplied, the monomial with
label k.

Table S.2.3: The vectors j and i = (k − j) for j ∈ B28 and ka = Γ28,a.

r(j) j1 j2 j3 i1 i2 i3 r(i)
1 0 0 0 1 2 1 28
2 1 0 0 0 2 1 18
3 0 1 0 1 1 1 15
4 0 0 1 1 2 0 14
6 1 1 0 0 1 1 9
7 1 0 1 0 2 0 8
8 0 2 0 1 0 1 7
9 0 1 1 1 1 0 6
14 1 2 0 0 0 1 4
15 1 1 1 0 1 0 3
18 0 2 1 1 0 0 2
28 1 2 1 0 0 0 1

S.2.6 Pyramid Operations: Implementation of Multiplication

The code shown below in (2.42) illustrates how Bk and Brevk are constructed using Math-
ematica.

JSK[list , K] :=

Position[Apply[And, Thread[#1<=#2&[#,K]]]& /@ list, True]//Flatten;

B = Table[JSK[GAMMA, GAMMA[[k]]], {k, 1, L}];
Brev = Reverse /@ B; (S.2.42)

As before, some explanation is required. The main tasks are to implement the j ≤ k
operation (2.34) and then to employ this implementation. We will begin by implementing
the j ≤ k operation. Several steps are required, and each of them is described briefly below:

• When Mathematica is presented with a statement of the form j <= k, with j and
k being integers, it replies with the answer True or the answer False. (Here j <= k

S.2. AD TOOLS 1903

denotes j ≤ k.) Two sample Mathematica runs are shown below:

3 <= 4

True (S.2.43)

5 <= 4

False (S.2.44)

• A Mathematica function can be constructed that does the same thing. It takes the
form

#1 <= #2 & [j, k] (S.2.45)

Here the symbols #1 and #2 set up two slots and the symbol & means the operation to
its left is to be regarded as a function and is to be applied to the arguments to its right
by inserting the arguments into the slots. Below is a Mathematica run illustrating this
feature.

j = 3; k = 4;

#1 <= #2 & [j, k]

True (S.2.46)

Observe that the output of this run agrees with that of (2.43).

• The same operation can be performed on pairs of arrays (rather than pairs of numbers)
in such a way that corresponding entries from each array are compared, with the output
then being an array of True and False answers. This is done using the Mathematica
command Thread. Below is a Mathematica run illustrating this feature.

j = {1, 2, 3}; k = {4, 5, 1};
Thread[#1 <= #2 & [j, k]]

{True, True, False} (S.2.47)

Note that the first two answers in the output array are True because the statements
1 ≤ 4 and 2 ≤ 5 are true. The last answer in the output array is False because the
statement 3 ≤ 1 is false.

• Suppose, now, that we are given two arrays j and k and we want to determine if j ≤ k
in the sense of (2.34). This can be done by applying the logical And operation (using
the Mathematica command Apply) to the True/False output array described above.
Below is a Mathematica run illustrating this feature.

j = {1, 2, 3}; k = {4, 5, 1};
Apply[And, Thread[#1 <= #2 & [j, k]]]

False (S.2.48)

Note that the output answer is False because at least one of the entries in the output
array in (2.47) is False. The output answer would be True if, and only if, all entries
in the output array in (2.47) were True.

1904
S. MATHEMATICA REALIZATION OF TPSA

AND TAYLOR MAP COMPUTATION

• Now that the j ≤ k operation has been defined for two exponent arrays, we would like
to construct a related operator/function, to be called JSK. (Here the letter S stands
for smaller than or equal to.) It will depend on the exponent array k, and its task will
be to search a list of exponent arrays to find those j within it that satisfy j ≤ k. The
first step in this direction is to slightly modify the function appearing in (2.48). Below
is a Mathematica run that specifies this modified function and illustrates that it has
the same effect.

j = {1, 2, 3}; k = {4, 5, 1};
Apply[And, Thread[#1 <= #2 & [#, k]]] & [j]

False (S.2.49)

Comparison of the functions in (2.48) and (2.49) reveals that what has been done is to
replace the argument j in (2.48) by a slot #, then follow the function by the character
&, and finally add the symbols [j]. What this modification does is to redefine the
function in such a way that it acts on what follows the second &.

• The next step is to extend the function appearing in (2.49) so that it acts on a list of
exponent arrays. To do this, we replace the symbols [j] by the symbols /@ list. The
symbols /@ indicate that what stands to their left is to act on what stands to their
right, and what stands to their right is a list of exponent arrays. The result of this
action will be a list of True/False results with one result for each exponent array in
the list. Below is a Mathematica run that illustrates how the further modified function
acts on lists.

k = {4, 5, 1};
ja = {3, 4, 1}; jb = {1, 2, 3}; jc = {1, 2, 1};
list = {ja, jb, jc};
Apply[And, Thread[#1 <= #2 & [#, k]]] & /@ list

{True, False, True} (S.2.50)

Observe that the output answer list is {True, False, True} because {3, 4, 1} ≤ {4, 5, 1}
is True, {1, 2, 3} ≤ {4, 5, 1} is False, and {1, 2, 1} ≤ {4, 5, 1} is True.

• What we would really like to know is where the True items are in the list, because that
will tell us where the j that satisfy j ≤ k reside. This can be accomplished by use of
the Mathematica command Position in conjunction with the result True. Below is a
Mathematica run that illustrates how this works.

k = {4, 5, 1};
ja = {3, 4, 1}; jb = {1, 2, 3}; jc = {1, 2, 1};
list = {ja, jb, jc};
Position[Apply[And, Thread[#1 <= #2 & [#, k]]] & /@ list, True]

{{1}, {3}} (S.2.51)

S.2. AD TOOLS 1905

Note that the output is an array of positions in the list for which j ≤ k. There
is, however, still one defect. Namely, the output array is an array of single-element
subarrays, and we would like it to be simply an array of location numbers. This
defect can be remedied by appending the Mathematica command Flatten, preceded
by //, to the instruction string in (2.51). The Mathematica run below illustrates this
modification.

k = {4, 5, 1};
ja = {3, 4, 1}; jb = {1, 2, 3}; jc = {1, 2, 1};
list = {ja, jb, jc};
Position[Apply[And, Thread[#1 <= #2 & [#, k]]] & /@ list, True]//Flatten

{1, 3} (S.2.52)

Now the output is a simple array containing the positions in the list for which j ≤ k.

• The last step is to employ the ingredients in (2.52) to define the operator JSK[list, k].
The Mathematica run below illustrates how this can be done.

k = {4, 5, 1};
ja = {3, 4, 1}; jb = {1, 2, 3}; jc = {1, 2, 1};
list = {ja, jb, jc};
JSK[list , k] :=

Position[Apply[And, Thread[#1 <= #2 & [#, k]]] & /@ list, True]//Flatten;

JSK[list, k]

{1, 3} (S.2.53)

Lines 4 and 5 above define the operator JSK[list, k], line 6 invokes it, and line 7
displays its output, which agrees with the output of (2.52).

• With the operator JSK[list, k] in hand, we are prepared to construct tables B and
Brev that will contain the Bk and the Brevk. The Mathematica run below illustrates
how this can be done.

B = Table[JSK[GAMMA, GAMMA[[k]]], {k, 1, L, 1}];
Brev = Reverse /@ B;

B[[8]]

Brev[[8]]

B[[28]]

Brev[[28]]

{1, 3, 8}
{8, 3, 1}
{1, 2, 3, 4, 6, 7, 8, 9, 14, 15, 18, 28}
{28, 18, 15, 14, 9, 8, 7, 6, 4, 3, 2, 1} (S.2.54)

1906
S. MATHEMATICA REALIZATION OF TPSA

AND TAYLOR MAP COMPUTATION

The first line employs the Mathematica command Table in combination with an im-
plied Do loop to produce a two-dimensional array B. Values of k in the range [1, L] are
selected sequentially. For each k value the associated exponent array k(k) = GAMMA[[k]]
is obtained. The operator JSK then searches the full GAMMA array to find the list of r
values associated with the j ≤ k. All these r values are listed in a row. Thus, the
array B consists of list of L rows, of varying width. The rows are labeled by k ∈ [1, L],
and in each row are the r values associated with the j ≤ k. In the second line the
Mathematica command Reverse is applied to B to produce a second array called Brev.
Its rows are the reverse of those in B. For example, as the Mathematica run illustrates,
B[[8]], which is the 8th row of B, contains the list {1, 3, 8}, and Brev[[8]] contains the list
{8, 3, 1}. Inspection of the r = 8 monomial in Table 2.1, that with exponents {0, 2, 0},
shows that it has the monomials with exponents {0,0,0}, {0,1,0}, and {0,2,0} as fac-
tors. And further inspection of Table 2.1 shows that the exponents of these factors
have the r values {1, 3, 8}. Similarly B[[28]], which is the 28th row of B, contains the
same entries that appear in the first column of Table 2.3. And Brev[[28]], which is the
28th row of Brev, contains the same entries that appear in the last column of Table
2.3.

Finally, we need to explain how the arrays B and Brev can be employed to carry out
polynomial multiplication. This can be done using the Mathematica dot product command:

• The exhibit below shows a simple Mathematica run that illustrates the use of the dot
product command.

Unprotect[V];

U = {.1, .2, .3, .4, .5, .6, .7, .8};
V = {1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8};
U.V

u = {1, 3, 5};
v = {6, 4, 2};
U[[u]]

V[[v]]

U[[u]].V[[v]]

5.64

{.1, .3, .5}
{1.6, 1.4, 1.2}
1.18 (S.2.55)

As before, V must be unprotected. See line 1. The rest of the first part this run (lines
2 through 4) defines two vectors U and V and then computes their dot product. Note
that if we multiply the entries in U and V pairwise and add, we get the result

.1 × 1.1 + .2 × 1.2 + · · ·+ .8 × 1.8 = 5.64,

S.2. AD TOOLS 1907

which agrees with the Mathematica result for U · V. See line 10.

The second part of this Mathematica run, lines 5 through 9, illustrates a powerful
feature of the Mathematica language. Suppose, as illustrated, we define two arrays u
and v of integers, and use these arrays as arguments for the vectors by writing U[[u]]
and V[[v]]. Then Mathematica uses the integers in the two arrays u and v as labels
to select the corresponding entries in U and V, and from these entries it makes new
corresponding vectors. In this example, the 1st, 3rd, and 5th entries in U are .1, .3, and
.5. And the 6th, 4th, and 2nd entries in V are 1.6, 1.4, and 1.2. Consequently, we find
that

U[[u]] = {.1, .3, .5},
V[[v]] = {1.6, 1.4, 1.2},

in agreement with lines 11 and 12 of the Mathematica results. Correspondingly, we
expect that U[[u]] · V[[v]] will have the value

U[[u]] · V[[v]] = .1 × 1.6 + .3 × 1.4 + .5 × 1.2 = 1.18,

in agreement with the last line of the Mathematica output.

• Now suppose, as an example, that we set k = 8 and use B[[k]] and Brev[[k]] in place of
the arrays u and v. The Mathematica fragment below shows what happens when this
is done.

k = 8;

B[[k]]

Brev[[k]]

U[[B[[k]]]]

V[[Brev[[k]]]]

U[[B[[k]]]] · V[[Brev[[k]]]]
{1, 3, 8}
{8, 3, 1}
{.1, .3, .8}
{1.8, 1.3, 1.1}
1.45 (S.2.56)

From (2.54) we see that B[[8]] = {1, 3, 8} and Brev[[8]] = {8, 3, 1} in agreement with
lines 7 and 8 of the Mathematica output above. Also, the 1st, 3rd, and 8th entries in U
are .1, .3, and .8. And the 8th, 3rd, and 1st entries in V are 1.8, 1.3, and 1.1. Therefore
we expect the results

U[[B[[k]]]] = {.1, .3, .8},
V[[Brev[[k]]]] = {1.8, 1.3, 1.1},

U[[B[[k]]]] · V[[Brev[[k]]]] = .1 × 1.8 + .3 × 1.3 + .8 × 1.1 = 1.45,

in agreement with the last three lines of (2.56).

1908
S. MATHEMATICA REALIZATION OF TPSA

AND TAYLOR MAP COMPUTATION

• Finally, suppose we carry out the operation U[[B[[k]]]] · V[[Brev[[k]]]] for all k ∈ [1, L]
and put the results together in a Table with entries labeled by k. According to (2.41),
the result will be the pyramid for the product of the two polynomials whose individual
pyramids are U and V. The Mathematica fragment (2.26), which is displayed again
below, shows how this can be done to define a product function, called PROD, that acts
on general pyramids U and V, using the command Table with an implied Do loop over
k.

PROD[U , V] := Table[U[[B[[k]]]] · V[[Brev[[k]]]], {k, 1, L, 1}];

Let us verify that this whole multiplication procedure works for a simple example. For
the sake of brevity, we will consider the case of m = 2 variables and work through terms
of degree p = 3. In this case pyramids have the modest length L(2, 3) = 10. Table 2.4
provides a labeling scheme for monomials in two variables using our standard modified glex
sequencing.

Table S.2.4: A labeling scheme for monomials in two variables.

r j1 j2

1 0 0
2 1 0
3 0 1
4 2 0
5 1 1
6 0 2
7 3 0
8 2 1
9 1 2
10 0 3
· · ·
· · ·

Suppose, for example, that u and v are the functions

u(z) = 1 + 2z1 + 3z2 + 4z1z2 (S.2.57)

and
v(z) = 5 + 6z1 + 7z2

2 . (S.2.58)

From Table 2.4 we find that the corresponding pyramids U and V are

U = {1, 2, 3, 0, 4, 0, 0, 0, 0, 0} (S.2.59)

and
V = {5, 6, 0, 7, 0, 0, 0, 0, 0, 0}. (S.2.60)

S.2. AD TOOLS 1909

Polynomial multiplication gives the result

w(z) = u(z) ∗ v(z)

= 5 + 16z1 + 15z2 + 12z2
1 + 38z1z2 + 7z2

2 + 24z2
1z2 + 14z1z

2
2 + 21z3

2 + 28z1z
3
2 .

(S.2.61)

Correspondingly, through terms of degree 3, the pyramid W = PROD[U, V] is given by

W = {5, 16, 15, 12, 38, 7, 0, 24, 14, 21}. (S.2.62)

Below is an execution of a Mathematica program illustrating the use of the product
function for the polynomials u and v given by (2.57) and (2.58).

Clear["Global‘ ∗ "];
Needs["Combinatorica‘"];

m = 2; p = 3;

GAMMA = Compositions[0, m];

Do[GAMMA = Join[GAMMA, Reverse[Compositions[d, m]]], {d, 1, p, 1}];
L = Length[GAMMA]

JSK[list , k] :=

Position[Apply[And, Thread[#1 <= #2 & [#, k]]] & /@ list, True]//Flatten;

B = Table[JSK[GAMMA, GAMMA[[r]]], {r, 1, L, 1}];
Brev = Reverse/@ B;

PROD[U , V] := Table[U[[B[[k]]]].V[[Brev[[k]]]], {k, 1, L, 1}];
U = {1, 2, 3, 0, 4, 0, 0, 0, 0, 0};
V = {5, 6, 0, 7, 0, 0, 0, 0, 0, 0};
10

PROD[U, V]

{5, 16, 15, 12, 38, 7, 0, 24, 14, 21} (S.2.63)

The first 11 lines of the code set up the necessary arrays and define the product function in
pyramid form. The next two lines specify the pyramids U and V given in (2.59) and (2.60).
The third line from the bottom, which results from the command in line 6, illustrates that
indeed L(2, 3) = 10. The final two lines show that use of the product function when applied
to the pyramids U and V does indeed product the pyramid W given by (2.62).

1910
S. MATHEMATICA REALIZATION OF TPSA

AND TAYLOR MAP COMPUTATION

S.2.7 Pyramid Operations: Implementation of Powers

With operation of multiplication in hand, it is easy to implement the operation of raising a
pyramid to a power. The code shown below in (2.64) demonstrates how this can be done.

POWER[U , 0] := C1;

POWER[U , 1] := U;

POWER[U , 2] := PROD[U, U];

POWER[U , 3] := PROD[U, POWER[U, 2]];

... (S.2.64)

Here C1 is the pyramid for the Taylor series having one as its constant term and all other
terms zero,

C1 = {1, 0, 0, 0, · · · }. (S.2.65)

It can be set up by the Mathematica code

C1 = Table[KroneckerDelta[k, 1], {k, 1, L, 1}]; (S.2.66)

which employs the Table command, the Kronecker delta function, and an implied Do loop
over k. This code should be executed before executing (2.64), but after the value of L has
been established.

S.2.8 Replacement Rule and Automatic Differentiation

Definition 2. The transformation A(z) ! A means replacement of every real variable za in
the arithmetic expression A(z) with an associated pyramid, and of every operation on real
variables in A(z) with the associated operation on pyramids.

Automatic differentiation is based on the following corollary: if A(z) ! A, then A is the
pyramid of A(z).

For simplicity, we will begin our discussion of the replacement rule with examples in-
volving only a single variable z. In this case monomial labeling, the relation between labels
and exponents, is given directly by the simple rules

r(j) = 1 + j and j(r) = r − 1. (S.2.67)

See Table 2.5.
As a first example, consider the expression

A = 2 + 3(z ∗ z). (S.2.68)

We have agreed to consider the case m = 1. Suppose we also set p = 2, in which case L = 3.
In ascending glex order, see Table 2.5, the pyramid for A is then

2 + 3z2
! A = (2, 0, 3). (S.2.69)

Now imagine that A was not such a simple polynomial, but some complicated expression.
Then the pyramid A could be generated by computing derivatives of A at z = 0 and dividing

S.2. AD TOOLS 1911

Table S.2.5: A labeling scheme for monomials in one variable.

r j
1 0
2 1
3 2
4 3
· ·
· ·

them by the appropriate factorials. Automatic differentiation offers another way to find
A. Assume that all operations in the arithmetic expression A have been encoded according
to Definition 1. For our example, these are + and PROD. Let C1 and Z be the pyramids
associated with 1 and z,

1 ! C1 = (1, 0, 0), (S.2.70)

z ! Z = (0, 1, 0). (S.2.71)

The quantity 2+3z2 results from performing various arithmetic operations on 1 and z. Def-
inition 1 says that the pyramid of 2+3z2 is identical to the pyramid obtained by performing
the same operations on the pyramids C1 and Z. That is, suppose we replace 1 and z with
their associated pyramids C1 and Z, and also replace ∗ with PROD. Then, upon evaluating
PROD, multiplying by the appropriate scalar coefficients, and summing, the result will be the
same pyramid A,

2 C1 + 3 PROD[Z, Z] = A. (S.2.72)

In this way, by knowing only the basic pyramids C1 and Z (prepared beforehand), one can
compute the pyramid of an arbitrary A(z). Finally, in contrast to numerical differentiation,
all numerical operations involved are accurate to machine precision. Mathematica code that
implements (2.72) will be presented shortly in (2.73).

Frequently, if A(z) is some complicated expression, the replacement rule will result in a
long chain of nested pyramid operations. At every step in the chain the present pyramid,
the pyramid resulting from the previous step, will be combined with some other pyramid to
produce a new pyramid. Each such operation has two arguments (the present pyramid and
some other pyramid), and Definition 1 applies to each step in the chain. Upon evaluating
all pyramid operations, the final result will be the pyramid of A(z).

By using the replacement operation the above procedure can be represented as:

1 ! C1, z ! Z, A ! A.

The following general recipe then applies: In order to derive the pyramid associated with
some arithmetic expression, apply the ! rule to all its variables, or parts, and replace all
operations with operations on pyramids. Here “apply the ! rule” to something means
replace that something with the associated pyramid. And the term “parts” means subex-
pressions. Definition 1 guarantees that the result will be the same pyramid A no matter how

1912
S. MATHEMATICA REALIZATION OF TPSA

AND TAYLOR MAP COMPUTATION

we split the arithmetic expression A into subexpressions. It is only necessary to recognize,
in case of using subexpressions, that one pyramid expression should be viewed as a function
of another.

For illustration, suppose we regard the A given by (2.68) to be the composition of two
functions, F (z) = 2 + 3z and G(z) = z2, so that A(z) = F (G(z)). Instead of associating
a constant and a single variable with their respective pyramids, let us now associate whole
subexpressions. In addition, let us label the pyramid expressions on the right of ! with
with some names, F and G:

2 + 3z ! 2 C1 + 3 Z = F[Z]

z2
! PROD[Z, Z] = G[Z]

A(z) ! F[G[Z]] = A.

We have indicated the explicit dependence on Z. It is important to note that F[Z] is a pyramid
expression prior to executing any the pyramid operations, i.e it is not yet a pyramid, but is
simply the result of formal replacements that follow the association rule.

Mathematica code for the simple example (2.72) is shown below,

C1 = {1, 0, 0};
Z = {0, 1, 0};
2 C1 + 3 PROD[Z, Z]

{2, 0, 3} (S.2.73)

Note that the result (2.73) agrees with (2.69). This example does not use any nested
expressions. We will now illustrate how the same results can be obtained using nested
expressions.

We begin by displaying a simple Mathematica program/execution, that employs ordi-
nary variables, and uses Mathematica’s intrinsic abilities to handle nested expressions. The
program/execution is

f[z] := 2 + 3z;

g[z] := z2;

f[g[z]]

2 + 3z2 (S.2.74)

With Mathematica the underscore in z indicates that z is a dummy variable name, and the
symbols := indicate that f is defined with a delayed assignment. That is what is done in
line one above. The same is done in line two for g. Line three requests evaluation of the
nested function f(g(z)), and the result of this evaluation is displayed in line four. Note that
the result agrees with (2.68).

With this background, we are ready to examine a program with analogous nested pyra-
mid operations. The same comments apply regarding the use of underscores and delayed

S.2. AD TOOLS 1913

assignments. The program is

C1 = {1, 0, 0};
Z = {0, 1, 0};
F[Z] := 2 C1 + 3 Z;

G[Z] := PROD[Z, Z];

F[G[Z]]

{2, 0, 3} (S.2.75)

Note that line (2.75) agrees with line (2.73), and is consistent with line (2.69).

S.2.9 Taylor Rule

We close this section with an important consequence of the replacement rule and nested
operations, which we call the Taylor rule. We begin by considering functions of a single
variable. Suppose the function G(x) has the special form

G(x) = zd + x (S.2.76)

where zd is some constant. Let F be some other function. Consider the composite (nested)
function A defined by

A(x) = F (G(x)) = F (zd + x). (S.2.77)

Then, assuming the necessary analyticity and by the chain rule, A evidently has a Taylor
expansion in x about the origin of the form

A = A(0) + A′(0)x + (1/2)A′′(0)x2 + · · ·
= F (zd) + F ′(zd)x + (1/2)F ′′(zd)x2 + · · · . (S.2.78)

We conclude that if we know the Taylor expansion of A about the origin, then we also know
the Taylor expansion of F about zd, and vice versa. Suppose, for example, that

F (z) = 1 + 2z + 3z2 (S.2.79)

and
zd = 4. (S.2.80)

Then there is the result

A(x) = F (G(x)) = F (zd + x) = 1 + 2(4 + x) + 3(4 + x)2 = 57 + 26x + 3x2. (S.2.81)

We now show that this same result can be obtained using pyramids. The Mathematica
fragment below illustrates how this can be done.

C1 = {1, 0, 0};
X = {0, 1, 0};
zd = 4;

F[Z] := 1 C1 + 2 Z + 3 PROD[Z, Z];

G[X] := zd C1 + X;

F[G[X]]

{57, 26, 3} (S.2.82)

1914
S. MATHEMATICA REALIZATION OF TPSA

AND TAYLOR MAP COMPUTATION

Note that (2.82) agrees with (2.81). See also Table 2.5.

Let us also illustrate the Taylor rule in the two-variable case. Let F (z1, z2) be some
function of two variables. Introduce the functions G(x1) and H(x1) having the special forms

G(x1) = zd
1 + x1, (S.2.83)

H(x2) = zd
2 + x2, (S.2.84)

where zd
1 and zd

2 are some constants. Consider the function A defined by

A(x1, x2) = F (G(x1), H(x2)) = F (zd
1 + x1, z

d
2 + x2). (S.2.85)

Then, again assuming the necessary analyticity and by the chain rule, A evidently has a
Taylor expansion in x1 and x2 about the origin (0, 0) of the form

A = A(0, 0) + [∂1A(0, 0)]x1 + [∂2A(0, 0)]x2

+(1/2)[(∂1)
2A(0, 0)]x2

1 + [∂1∂2A(0, 0)]x1x2 + (1/2)[(∂2)
2A(0, 0)]x2

2 + · · ·
= F (zd

1 , z
d
2) + [∂1F (zd

1 , z
d
2)]x1 + [∂2F (zd

1 , z
d
2)]x2

+(1/2)[(∂1)
2F (zd

1 , z
d
2)]x

2
1 + [∂1∂2AF (zd

1 , z
d
2)]x1x2 + (1/2)[(∂2)

2A(F (zd
1 , z

d
2))]x

2
2 + · · ·
(S.2.86)

where

∂1 = ∂/∂x1, ∂2 = ∂/∂x2 (S.2.87)

when acting on A, and

∂1 = ∂/∂z1, ∂2 = ∂/∂z2 (S.2.88)

when acting on F . We conclude that if we know the Taylor expansion of A about the origin
(0, 0), then we also know the Taylor expansion of F about (zd

1 , z
d
2), and vice versa.

As a concrete example, suppose that

F (z1, z2) = 1 + 2z1 + 3z2 + 4z2
1 + 5z1z2 + 6z2

2 (S.2.89)

and

zd
1 = 7, zd

2 = 8. (S.2.90)

Then, hand calculation shows that F (G(x1), H(x2)) takes the form

F (zd
1 + x1, z

d
2 + x2) = F (G(x1), H(x2))

= 899 + 98x1 + 4x2
1 + 134x2 + 5x1x2 + 6x2

2. (S.2.91)

S.2. AD TOOLS 1915

Below is a Mathematica execution that finds the same result,

F[z1 , z2] := 1 + 2 z1 + 3 z2 + 4 z12 + 5 z1 z2 + 6 z22

G[x1] := zd1 + x1;

H[x2] := zd2 + x2;

zd1 = 7;

zd2 = 8;

A = F[G[x1], H[x2]]

Expand[A]

1 + 2 (7 + x1) + 4 (7 + x1)2 + 3 (8 + x2) + 5 (7 + x1) (8 + x2) + 6 (8 + x2)2

899 + 98 x1 + 4 x12 + 134 x2 + 5 x1 x2 + 6 x22

(S.2.92)

The calculation above dealt with the case of a function of two ordinary variables. We now
illustrate, for the same example, that there is an analogous result for pyramids. Following
the replacement rule, we should make the substitutions

zd
1 + x1 ! zd1 C1 + X1, (S.2.93)

zd
2 + x2 ! zd2 C1 + X2, (S.2.94)

1 + 2 z1 + 3 z2 + 4 z2
1 + 5 z1 z2 + 6 z2

2 !

C1 + 2 Z1 + 3 Z2 + 4 PROD[Z1, Z1] + 5 PROD[Z1, Z2] + 6 PROD[Z2, Z2].

(S.2.95)

The Mathematica fragment below, executed for the case m = 2 and p = 2, in which case
L = 6, illustrates how the analogous result is obtained using pyramids,

C1 = {1, 0, 0, 0, 0, 0};
X1 = {0, 1, 0, 0, 0, 0};
X2 = {0, 0, 1, 0, 0, 0};
F[Z1 , Z2] := C1 + 2 Z1 + 3 Z2 + 4 PROD[Z1, Z1] + 5 PROD[Z1, Z2]

+6 PROD[Z2, Z2];

G[X1] := z01 C1 + X1;

H[X2] := z02 C1 + X2;

zd1 = 7;

zd2 = 8;

F[G[X1], H[X2]]

{899, 98, 134, 4, 5, 6} (S.2.96)

Note that, when use is made of Table 2.4, the last line of (2.96) agrees with (2.91) and the
last line of (2.92).

1916
S. MATHEMATICA REALIZATION OF TPSA

AND TAYLOR MAP COMPUTATION

S.3 Numerical Integration and Replacement Rule

S.3.1 Numerical Integration

Consider the set of differential equations (1.1). As described in Chapter 2, a standard
procedure for their numerical integration from an initial time ti = t0 to some final time tf

is to divide the time axis into a large number of steps N , each of small duration h, thereby
introducing successive times tn defined by the relation

tn = t0 + nh with n = 0, 1, · · · , N. (S.3.1)

By construction, there will also be the relation

Nh = tf − ti. (S.3.2)

The goal is to compute the vectors zn, where

zn = z(tn), (S.3.3)

starting from the vector z0. The vector z0 is assumed given as a set of definite numbers,
i.e. the initial conditions at t0.

If we assume for the solution piece-wise analyticity in t, or at least sufficient differentia-
bility in t (which will be the case if the fa are piece-wise analytic or at least have sufficient
differentiability in t), we may convert the set of differential equations (1.1) into a set of
recursion relations for the zn in such a way that the zn obtained by solving the recursion
relations differ from the true zn by only small truncation errors of order hm. (Here m is
not the number of variables, but rather some fixed integer describing the accuracy of the
integration method.) One such procedure, a fourth-order Runge Kutta (RK4) method, is
the set of marching/recursion rules

zn+1 = zn +
1

6
(a + 2b + 2c + d) (S.3.4)

where, at each step,
a = hf (zn, tn), (S.3.5)

b = hf (zn +
1

2
a, tn +

1

2
h),

c = hf (zn +
1

2
b, tn +

1

2
h),

d = hf (zn + c, tn + h).

Thanks to the genius of Runge and Kutta, the relations (3.4) and (3.5) have been constructed
in such a way that the method is locally (at each step) correct through order h4, and makes
local truncation errors of order h5. Recall Section 2.3.2

In the case of a single variable, and therefore a single differential equation, the relations
(3.4) and (3.5) may be encoded in the Mathematica form shown below. Here Zvar is the
dependent variable, t is the time, Zt is a temporary variable, tt is a temporary time, and

S.3. NUMERICAL INTEGRATION AND REPLACEMENT RULE 1917

ns is the number of integration steps. The program employs a Do loop over i so that the
operations (3.4) and (3.5) are carried out ns times.

RK4 := (

t0 = t;

Do[

Aa = h F[Zvar, t];

Zt = Zvar + (1/2)Aa;

tt = t + h/2;

Bb = h F[Zt, tt];

Zt = Zvar + (1/2)Bb;

Cc = h F[Zt, tt];

Zt = Zvar + Cc;

tt = t + h;

Dd = h F[Zt, tt];

Zvar = Zvar + (1/6)(Aa + 2 Bb + 2 Cc + Dd);

t = t0 + i h;,

{i, 1, ns, 1}
]

)

(S.3.6)

S.3.2 Replacement Rule, Single Equation/Variable Case

We now make what, for our purposes, is a fundamental observation: The operations that
occur in the Runge Kutta recursion rules (3.4) and (3.5) and realized in the code above
can be extended to pyramids by application of the replacement rule. In particular, the
dependent variable z can be replaced by a pyramid, and the various operations involved in
the recursion rules can be replaced by pyramid operations. Indeed if we look at the code
above, apart from the evaluation of F, we see that the quantities Zvar, Zt, Aa, Bb, Cc, and
Dd can be viewed, if we wish, as pyramids since the only operations involved are scalar
multiplication and addition. The only requirement for a pyramidal interpretation of the RK4
Mathematica code is that the right side of the differential equation, F[∗, ∗], be defined for
pyramids. Finally, we remark that the features that make it possible to interpret the RK4
Mathematica code either in terms of ordinary variables or pyramidal variables will hold for
Mathematica realizations of many other familiar numerical integration methods including
other forms of Runge Kutta, predictor-corrector methods, and extrapolation methods.

To make these ideas concrete, and to understand their implications, let us begin with a
simple example. Suppose, in the single variable case, that the right side of the differential
equation has the simple form

f(z, t) = −2tz2. (S.3.7)

1918
S. MATHEMATICA REALIZATION OF TPSA

AND TAYLOR MAP COMPUTATION

The differential equation with this right side can be integrated analytically to yield the
solution

z(t) = z0/[1 + z0(t − t0)2]. (S.3.8)

In particular, for the case t0 = 0, z0 = 1, and t = 1, there is the result

z(1) = z0/[1 + z0] = 1/2. (S.3.9)

Let us also integrate the differential equation with the right side (3.7) numerically. Shown
below is the result of running the associated Mathematica Runge Kutta code for this case.

Clear["Global‘ ∗ "];
F[Z , t] := −2 t Z2;

h = .1;

ns = 10;

t = 0;

Zvar = 1.;

RK4;

t

Zvar

1.

0.500001

(S.3.10)

Note that the last line of (3.10) agrees with (3.9) save for a “1” in the last entry. As expected,
and as experimentation shows, this small difference, due to accumulated truncation error,
becomes even smaller if h is decreased (and correspondingly, ns is increased).

Suppose we expand the solution (3.9) about the design initial condition zd0 = 1 by
replacing z0 by zd0 +x and expanding the result in a Taylor series in x about the point x=0.
Below is a Mathematica run that performs this task.

zd0 = 1;

Series[(zd0 + x)/(1 + zd0 + x), {x, 0, 5}]
1

2
+

x

4
− x2

8
+

x3

16
− x4

32
+

x5

64
+ O[x]6

(S.3.11)

We will now see that the same Taylor series can be obtained by the operation of numerical
integration applied to pyramids. The Mathematica code below shows, for our example

S.3. NUMERICAL INTEGRATION AND REPLACEMENT RULE 1919

differential equation, the application of numerical integration to pyramids.

Clear["Global‘ ∗ "];
Needs["Combinatorica‘"];

m = 1; p = 5;

GAMMA = Compositions[0, m];

Do[GAMMA = Join[GAMMA, Reverse[Compositions[d, m]]], {d, 1, p, 1}];
L = Length[GAMMA];

JSK[list , k] :=

Position[Apply[And, Thread[#1 <= #2 & [#, k]]] & /@ list, True]//Flatten;

B = Table[JSK[GAMMA, GAMMA[[r]]], {r, 1, L, 1}];
Brev = Reverse/@ B;

PROD[U , V] := Table[U[[B[[k]]]].V[[Brev[[k]]]], {k, 1, L, 1}];
F[Z , t] := −2 t PROD[Z, Z];

h = .01;

ns = 100;

t = 0;

zd0 = 1;

C1 = {1, 0, 0, 0, 0, 0};
X = {0, 1, 0, 0, 0, 0};
Zvar = zd0 C1 + X;

RK4;

t

Zvar

1.

{0.5, 0.25,−0.125, 0.0625,−0.03125, 0.015625} (S.3.12)

The first 11 lines of the code set up what should be by now the familiar procedure for
labeling and multiplying pyramids. In particular, m = 1 because we are dealing with a
single variable, and p = 5 since we wish to work through fifth order. The line

F[Z , t] := −2 t PROD[Z, Z] (S.3.13)

defines F[∗, ∗] for the case of pyramids, and is the result of applying the replacement rule to
the right side of f as given by (3.7),

−2 t z2
! −2 t PROD[Z, Z]. (S.3.14)

Lines 13 through 15 play the same role as lines 3 through 5 in (3.10) except that, in order
to improve numerical accuracy, the step size h has been decreased and correspondingly the
number of steps ns has been increased. Lines 16 through 19 now initialize Zvar as a pyramid
with a constant part zd0 and first-order monomial part with coefficient 1,

Zvar = zd0 C1 + X. (S.3.15)

1920
S. MATHEMATICA REALIZATION OF TPSA

AND TAYLOR MAP COMPUTATION

These lines are the pyramid equivalent of line 6 in (3.10). Finally lines 20 through 22 are
the same as lines 7 through 9 in (3.10). In particular, the line RK4 in (3.10) and the line RK4
in (3.12) refer to exactly the same code, namely that in (3.6).

Let us now compare the outputs of (3.10) and (3.12). Comparing the penultimate lines
in each we see that the final time t = 1 is the same in each case. Comparing the last lines
shows that the output Zvar for (3.12) is a pyramid whose first entry agrees with the last line
of (3.10). Finally, all the entries in the pyramid output agree with the Taylor coefficients in
the expansion (3.11). We see, in the case of numerical integration (of a single differential
equation), that replacing the dependent variable by a pyramid, with the initial value of the
pyramid given by (3.15), produces a Taylor expansion of the final condition in terms of the
initial condition.

What accounts for this near miraculous result? It’s the Taylor rule described described
in Subsection 2.9. We have already learned that to expand some function F (z) about some
point zd we must evaluate F (zd + x). See (2.77). We know that the final Zvar, call it
Zvarfin, is an analytic function of the initial Zvar, call it Zvarin, so that we may write

Zvarfin = Zvarfin(Zvarin) = g(Zvarin) (S.3.16)

where g is the function that results from following the trajectory from t = tin to t = tfin.
Therefore, by the Taylor rule, to expand Zvarfin about Zvarin = zd0, we must evaluate
Zvarfin(zd0 + x). That, with the aid of pyramids, is what the code (3.12) accomplishes.

S.3.3 Multi Equation/Variable Case

Because of Mathematica’s built-in provisions for handling arrays, the work of the previous
section can easily be extended to the case of several differential equations. Consider, as an
example, the two-variable case for which f has the form

f1(z, t) = −z2
1 ,

f2(z, t) = +2z1z2. (S.3.17)

The differential equations associated with this f can be solved in closed form to yield, with
the understanding that t0 = 0, the solution

z1(t) = z0
1/(1 + tz0

1),

z2(t) = z0
2(1 + tz0

1)
2. (S.3.18)

For the final time t = 1 we find the result

z1(1) = z0
1/(1 + z0

1),

z2(1) = z0
2(1 + z0

1)
2. (S.3.19)

Let us expand the solution (3.19) about the design initial conditions

zd0
1 = 1,

zd0
2 = 2, (S.3.20)

S.3. NUMERICAL INTEGRATION AND REPLACEMENT RULE 1921

by writing

z0
1 = zd0

1 + x1 = 1 + x1,

z0
2 = zd0

2 + x2 = 2 + x2. (S.3.21)

Doing so gives the results

z1(1) = (1 + x1)/(2 + x1) = (2 + x1 − 1)/(2 + x1) = 1 − 1/(2 + x1) =

= 1 − (1/2)(1 + x1/2)−1 = 1 − (1/2)[1 − x1/2 + (x1/2)2 − (x1/2)3 + · · ·
= (1/2) + (1/4)x1 − (1/8)x2

1 + (1/16)x3
1 + · · · ,

(S.3.22)

z2(1) = (2 + x2)(2 + x1)
2

= 8 + 8x1 + 4x2 + 2x2
1 + 4x1x2 + x2

1x2. (S.3.23)

We will now explore how this same result can be obtained using the replacement rule
applied to the operation of numerical integration. As before, we will label individual mono-
mials by an integer r. Recall that Table 2.5 shows our standard modified glex sequencing
applied to the case of two variables.

The Mathematica code below shows, for our two-variable example differential equation,
the application of numerical integration to pyramids. Before describing the code in some
detail, we take note of the bottom two lines. When interpreted with the aid of Table 2.4,
we see that the penultimate line of (3.24) agrees with (3.22), and the last line of (3.24)
nearly agrees with (3.23). The only discrepancy is that for the monomial with label r = 7
in the last line of (3.24). In the Mathematica output it has the value −1.16563 × 10−7

while, according to (3.23), the true value should be zero. This small discrepancy arises from
the truncation error inherent in the RK4 algorithm, and becomes smaller as the step size
h is decreased (and ns is correspondingly increased), or if some more accurate integration
algorithm is used. We conclude that, with the use of pyramids, it is also possible in the
two-variable case to obtain Taylor expansions of the final conditions in terms of the initial
conditions. Indeed, what is involved is again the Taylor rule applied, in this instance, to the
case of two variables.

1922
S. MATHEMATICA REALIZATION OF TPSA

AND TAYLOR MAP COMPUTATION

Clear["Global‘ ∗ "];
Needs["Combinatorica‘"];

m = 2; p = 3;

GAMMA = Compositions[0, m];

Do[GAMMA = Join[GAMMA, Reverse[Compositions[d, m]]], {d, 1, p, 1}];
L = Length[GAMMA];

JSK[list , k] :=

Position[Apply[And, Thread[#1 <= #2 & [#, k]]] & /@ list, True]//Flatten;

B = Table[JSK[GAMMA, GAMMA[[r]]], {r, 1, L, 1}];
Brev = Reverse/@ B;

PROD[U , V] := Table[U[[B[[k]]]].V[[Brev[[k]]]], {k, 1, L, 1}];
F[Z , t] := {−PROD[Z[[1]], Z[[1]]], 2. PROD[Z[[1]], Z[[2]]]};
h = .01;

ns = 100;

t = 0;

zd0 = {1., 2.};
C1 = Table[KroneckerDelta[k, 1], {k, 1, L, 1}];
X[1] = Table[KroneckerDelta[k, 2], {k, 1, L, 1}];
X[2] = Table[KroneckerDelta[k, 3], {k, 1, L, 1}];
Zvar = {zd0[[1]] C1 + X[1], zd0[[2]] C1 + X[2]};
RK4;

t

Zvar

1.

{{0.5, 0.25, 0.,−0.125, 0., 0., 0.0625, 0., 0., 0, },
{8., 8., 4., 2., 4., 0.,−1.16563× 10−7, 1., 0., 0.}} (S.3.24)

Let us compare the structures of the routines for the single variable case and multi (two)
variable case as illustrated in (3.12) and (3.24). The first difference occurs at line 3 where
the number of variables m and the maximum degree p are specified. In (3.24) m is set to
2 because we wish to treat the case of two variables, and p is set to 3 simply to limit the
lengths of the output arrays. The next difference occurs in line 12 where the right side F
of the differential equation is specified. The major feature of the definition of F in (3.24) is
that it is specified as two pyramids because the right side of the definition has the structure
{∗, ∗} where each item ∗ is an instruction for computing a pyramid. In particular, the two
pyramids are those for the two components of f as given by (3.17) and use of the replacement
rule,

−z2
1 ! −PROD[Z[[1]], Z[[1]]], (S.3.25)

S.4. DUFFING EQUATION APPLICATION 1923

2z1z2 ! 2. PROD[Z[[1]], Z[[2]]]. (S.3.26)

The next differences occur in lines 16 through 20 of (3.24). In line 16, since specification
of the initial conditions now requires two numbers, see (3.20), zd0 is specified as a two-
component array. In lines 17 and 18 of (3.12) the pyramids C1 and X are set up explicitly
for the case p = 5. By contrast, in lines 17 through 19 of (3.24), the pyramids C1, X[1], and
X[2] are set up for general p with the aid of the Table command and the Kronecker delta
function. Recall (2.66) and observe from Tables 2.1, 2.4, and 2.5 that, no matter what the
values of m and p, the constant monomial has the label r = 1 and the monomial x1 has
the label r = 2. Moreover, as long as m ≥ 2 and no matter what the value of p, the x2

monomial has the label r = 3. Finally, compare line 19 in (3.12) with line 20 in (3.24),
both of which define the initial Zvar. We see that the difference is that in (3.12) Zvar is
defined as a single pyramid while in (3.24) it is defined as a pair of pyramids of the form
{∗, ∗}. Most remarkably, all other corresponding lines in (3.12) and (3.24) are the same. In
particular, the same RK4 code, namely that given by (3.6), is used in the scalar case (3.10),
the single pyramid case (3.12), and the two-pyramid case (3.24). This multi-use is possible
because of the convenient way in which Mathematica handles arrays.

We conclude that the pattern for the multivariable case is now clear. Only the following
items need to be specified in an m dependent way:

• The value of m.

• The entries in F with entries entered as an array {∗, ∗, · · · } of m pyramids.

• The design initial condition array zd0.

• The pyramids for C1 and X[1] through X[m].

• The entries for the initial Zvar specified as an array

{zd0[[1]] C1 + X[1], zd0[[2]] C1 + X[2], · · · , zd0[[m]] C1 + X[m]} of m pyramids.

S.4 Duffing Equation Application

Let us now apply the methods just developed to the case of the Duffing equation with param-
eter dependence as described by the relations (10.12.133) through (10.12.138). Mathematica
code for this purpose is shown below. By looking at the final lines that result from executing
this code, we see that the final output is an array of the form {{∗}, {∗}, {∗}}. That is, the
final output is an array of three pyramids. This is what we expect, because now we are
dealing with three variables. See line 3 of the code, which sets m = 3. Also, for convenience
of viewing, results are calculated and displayed only through third order as a consequence
of setting p = 3.

1924
S. MATHEMATICA REALIZATION OF TPSA

AND TAYLOR MAP COMPUTATION

Clear["Global‘ ∗ "];
Needs["Combinatorica‘"];

m = 3; p = 3;

GAMMA = Compositions[0, m];

Do[GAMMA = Join[GAMMA, Reverse[Compositions[d, m]]], {d, 1, p, 1}];
L = Length[GAMMA];

JSK[list , k] :=

Position[Apply[And, Thread[#1 <= #2 & [#, k]]] & /@ list, True]//Flatten;

B = Table[JSK[GAMMA, GAMMA[[r]]], {r, 1, L, 1}];
Brev = Reverse/@ B;

PROD[U , V] := Table[U[[B[[k]]]].V[[Brev[[k]]]], {k, 1, L, 1}];
POWER[U , 2] := PROD[U, U];

POWER[U , 3] := PROD[U, POWER[U, 2]];

C0 = Table[0, {k, 1, L, 1}];
F[Z , t] := {Z[[2]],
−2. beta PROD[Z[[3]], Z[[2]]] − PROD[POWER[Z[[3]], 2], Z[[1]]]−
POWER[Z[[1]], 3] − eps Sin[t] POWER[Z[[3]], 3],

C0};
ns = 100;

t = 0;

h = (2Pi)/ns;

beta = .1; eps = 1.5;

zd0 = {.3, .4, .5};
C1 = Table[KroneckerDelta[k, 1], {k, 1, L, 1}];
X[1] = Table[KroneckerDelta[k, 2], {k, 1, L, 1}];
X[2] = Table[KroneckerDelta[k, 3], {k, 1, L, 1}];
X[3] = Table[KroneckerDelta[k, 4], {k, 1, L, 1}];
Zvar = {zd0[[1]] C1 + X[1], zd0[[2]] C1 + X[2], zd0[[3]] C1 + X[3]};
RK4;

t

Zvar

S.4. DUFFING EQUATION APPLICATION 1925

2π

{{−0.0493158, 0.973942,−0.110494, 5.51271, 3.54684, 3.46678,

11.2762, 2.36463, 1.0985, 23.3332,−1.03541,−3.23761,−12.8064,

4.03421,−23.4342,−17.8967, 1.96148, 5.07403,−36.9009, 25.1379},
{0.439713, 1.05904, 0.427613, 3.3177, 0.0872459, 0.635397,−3.02822,

1.77416,−4.10115, 3.16981,−2.43002,−5.33643,−7.77038,−6.08476,

− 0.541465,−21.1672,−1.4091,−9.54326, 14.6334,−39.2312},
{0.5, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}

(S.4.1)

The first unusual fragments in the code are lines 12 and 13, which define functions that
implement the calculation of second and third powers of pyramids. Recall Subsection 2.7.
The first new fragment is line 14, which defines the pyramid C0 with the aid of the Table
command and an implied Do loop. As a result of executing this code, C0 is an array of L
zeroes. The next three lines, lines 15 through 18, define F, which specifies the right sides of
equations (10.12.133) through (10.12.135). See (10.12.136) through (10.12.138). The right
side of F is of the form {∗, ∗, ∗}, an array of three pyramids. By looking at (10.12.136) and
recalling the replacement rule, we see that the first pyramid should be Z[[2]],

z2 ! Z[[2]]. (S.4.2)

The second pyramid on the right side of F is more complicated. It arises by applying the
replacement rule to the right side of (10.12.137) to obtain the associated pyramid,

− 2βz3z2 − z2
3z1 − z3

1 − εz3
3 sin t !

−2. beta PROD[Z[[3]], Z[[2]]] − PROD[POWER[Z[[3]], 2], Z[[1]]]−
POWER[Z[[1]], 3] − eps Sin[t] POWER[Z[[3]], 3]. (S.4.3)

The third pyramid on the right side of F is simplicity itself. From (10.12.138) we see that
this pyramid should be the result of applying the replacement rule to the number 0. Hence,
this pyramid is C0,

0 ! C0 = {0, 0, · · · , 0}. (S.4.4)

The remaining lines of the code require little comment. Line 20 sets the initial time to
0, and line 21 defines h in such a way that the final value of t will be 2π. Line 22 establishes
the parameter values β = .1 and ε = 1.5, which are those for Figure 1.4.9. Line 23 specifies
that the design initial condition is

z1(0) = zd0
1 = .3, z2(0) = zd0

2 = .4, z3(0) = zd0
3 = .5 = σ, (S.4.5)

and consequently
ω = 1/σ = 2. (S.4.6)

See (10.12.104). Also, it follows from (10.12.103) and (10.12.106) that

q(0) = ωQ(0) = ωz1(0) = (2)(.3) = .6, (S.4.7)

1926
S. MATHEMATICA REALIZATION OF TPSA

AND TAYLOR MAP COMPUTATION

q′(0) = ω2Q̇(0) = ω2z2(0) = (22)(.4) = 1.6. (S.4.8)

Next, lines 24 through 28 specify that the expansion is to be carried out about the initial
conditions (7.124). Finally, line 29 invokes the RK4 code given by (3.6). That is, as before,
no modifications are required in the integration code.

A few more comments about the output are appropriate. Line 32 shows that the final
time t is indeed 2π, as desired. The remaining output lines display the three pyramids that
specify the final value of Zvar. From the first entry in each pyramid we see that

z1(2π) = −0.0493158, (S.4.9)

z2(2π) = 0.439713, (S.4.10)

z3(2π) = .5, (S.4.11)

when there are no deviations in the initial conditions. The remaining entries in the pyramids
are the coefficients in the Taylor series that describe the changes in the final conditions that
occur when changes are made in the initial conditions (including the parameter σ). We are,
of course, particularly interested in the first two pyramids. The third pyramid has entries
only in the first place and the fourth place, and these entries are the same as those in the third
pyramid pyramid for Zvar at the start of the integration, namely those in zd0[3] C1 + X[3].
The fact that the third pyramid in Zvar remains constant is the expected consequence of
(10.12.138).

At this point we should also describe how the M8 employed in Section 22.12 was actually
computed. It could have been computed by setting p = 8 in (4.1) and specifying a small
step size h and a great number of steps ns to insure good accuracy. Of course, when p = 8,
the pyramids are large. Therefore, one does not usually print them out, but rather writes
them to files or sends them directly to other programs for further use.

However, rather than using RK4 in (4.1), we replaced it with an adaptive 4-5th order
Runge-Kutta-Fehlberg routine that dynamically adjusts the time step h during the course
of integration to achieve a specified local accuracy, and we required that the error at each
step be no larger than 10−12. (Recall Subsection 2.1.1.) Like the RK4 routine, the Runge-
Kutta-Fehlberg routine, when implemented in Mathematica, has the property that it can
integrate any number of equations both in scalar variable and pyramid form without any
changes in the code.2

S.5 Relation to the Complete Variational Equations

At this point it may not be obvious to the reader that the use of pyramids in integration
routines to obtain Taylor expansions is the same as integrating the complete variational
equations. We now show that the integration of pyramid equations is equivalent to the
forward integration of the complete variational equations. For simplicity, we will examine
the single variable case with no parameter dependence. The reader who has mastered this
case should be able to generalize the results obtained to the general case.

2A Mathematica version of this code is available from Dobrin Kaltchev (kaltchev@triumf.ca) upon request.

S.5. RELATION TO THE COMPLETE VARIATIONAL EQUATIONS 1927

In the single variable case with no parameter dependence (1.1) becomes

ż = f(z, t). (S.5.1)

Let zd(t) be some design solution and introduce a deviation variable ζ by writing

z = zd + ζ . (S.5.2)

Then the equation of motion (5.1) takes the form

żd + ζ̇ = f(zd + ζ , t). (S.5.3)

Also, the relations (10.12.14) and (10.12.15) take the form

f(zd + ζ , t) = f(zd, t) + g(zd, t, ζ) (S.5.4)

where g has an expansion of the form

g(zd, t, ζ) =
∞∑

j=1

gj(t)ζj. (S.5.5)

Finally, (10.12.16) and (10.12.17) become

żd = f(zd, t), (S.5.6)

ζ̇ = g(zd, t, ζ) =
∞∑

j=1

gj(t)ζj, (S.5.7)

and (10.12.18) becomes

ζ =
∞

∑

j=1

hj(t)(ζi)
j. (S.5.8)

Insertion of (5.8) into both sides of (5.7) and equating like powers of ζi now yields the set
of differential equations

ḣj′′(t) =
∞

∑

j=1

gj(t)U j′′

j (hs) with j, j′′ ≥ 1 (S.5.9)

where the (universal) functions U j′′

j (hs) are given by the relations

(
∞

∑

j′=1

hj′(ζi)
j′

)j

=
∞

∑

j′′=1

U j′′

j (hs)(ζi)
j′′. (S.5.10)

The equations (5.6) and (5.9) are to be integrated from t = tin = t0 to t = tfin with the
initial conditions

zd(t0) = zd0, (S.5.11)

1928
S. MATHEMATICA REALIZATION OF TPSA

AND TAYLOR MAP COMPUTATION

h1(t0) = 1, (S.5.12)

hj′′(t0) = 0 for j′′ > 1. (S.5.13)

Let us now consider the numerical integration of pyramids. Upon some reflection, we see
that the numerical integration of pyramids is equivalent to finding the numerical solution
to a differential equation with pyramid arguments. For example, in the single-variable case,
let Zvar(t) be the pyramid appearing in the integration process. Then, its integration is
equivalent to solving numerically the pyramid differential equation

(d/dt)Zvar(t) = F(Zvar, t). (S.5.14)

We now work out the consequences of this observation. By the inverse of the replacement
rule, we may associate a Taylor series with the pyramid Zvar(t) by writing

Zvar(t) ! c0(t) +
∑

j≥1

cj(t)x
j . (S.5.15)

By (5.15) it is intended that the entries in the pyramid Zvar(t) be used to construct a
corresponding Taylor series with variable x. In view of (3.15), there are the initial conditions

c0(t0) = zd(t0), (S.5.16)

c1(t0) = 1, (S.5.17)

cj(t0) = 0 for j > 1. (S.5.18)

We next seek the differential equations that determine the time evolution of the cj(t).
Under the inverse replacement rule, there is also the correspondence

(d/dt)Zvar(t) ! ċ0(t) +
∑

j≥1

ċj(t)x
j . (S.5.19)

We have found a representation for the left side of (5.14). We need to do the same for the
right side. That is, we need the Taylor series associated with the pyramid F(Zvar, t). By
the inverse replacement rule, it will be given by the relation

F(Zvar, t) ! f(
∑

j≥0

cj(t)x
j , t). (S.5.20)

Here it is understood that the right side of (5.20) is to be expanded in a Taylor series about
x = 0. From (5.4), (5.5), and (5.10) we have the relations

f(
∑

j≥0

cj(t)x
j , t) = f(c0(t)) + g(c0(t), t,

∑

j≥1

cj(t)x
j)

= f(c0(t)) +
∑

k≥1

gk(t)(
∑

j≥1

cj(t)x
j))k

= f(c0(t)) +
∑

k≥1

gk(t)
∑

j≥1

U j
k(c!)x

j .

(S.5.21)

S.5. RELATION TO THE COMPLETE VARIATIONAL EQUATIONS 1929

Therefore, there is the inverse replacement rule

F(Zvar, t) ! f(c0(t)) +
∑

k≥1

gk(t)
∑

j≥1

U j
k(c!)x

j . (S.5.22)

Upon comparing like powers of x in (5.19) and (5.22), we see that the pyramid differential
equation (5.14) is equivalent to the set of differential equations

ċ0(t) = f(c0(t)), (S.5.23)

ċj(t) =
∑

k≥1

gk(t)U j
k(c!). (S.5.24)

Finally, compare the initial conditions (5.11) through (5.13) with the initial conditions
(5.16) through (5.18), and compare the differential equations (5.6) and (5.9) with the differ-
ential equations (5.23) and (5.24). We conclude that that there must be the relations

c0(t) = zd(t), (S.5.25)

cj(t) = hj(t) for j ≥ 1. (S.5.26)

We have verified, in the single variable case, that the use of pyramids in integration routines
is equivalent to the solution of the complete variational equations using forward integration.
As stated earlier, verification of the analogous m-variable result is left to the reader.

We also observe the wonderful convenience that, when pyramid operations are imple-
mented and employed, it is not necessary to explicitly work out the forcing terms gr

a(t)
of Subsection 10.12.1 and the universal functions U r′′

r (hs
n) of Subsection 10.12.3, nor is it

necessary to explicitly set up the complete variational equations (10.12.36). All these com-
plications are handled implicitly and automatically by the pyramid routines.

Exercises

S.5.1. Verify, in the general m variable case, that the use of pyramids in integration routines
is equivalent to the solution of the complete variational equations using forward integration.

Bibliography

[1] R. Neidinger, “Computing Multivariable Taylor Series to Arbitrary Order”, Proc. of
Intern. Conf. on Applied programming languages, San Antonio, pp. 134-144 (1995).

[2] Wolfram Research, Inc., Mathematica, Version 7.0, Champaign, IL (2008).

[3] Dobrin Kaltchev (TRIUMF, 4004 Wesbrook Mall, Vancouver, B.C., Canada V6T
2A3) designed and wrote all the Mathematica code for this appendix, and he and Alex
Dragt coauthored the text. D. Kaltchev wishes to thank his colleagues from TRIUMF
and CERN, especially Richard Abram Baartman, for their interest and support.

[4] D. Kalman and R. Lindell, “A recursive approach to multivariate automatic differen-
tiation”, Optimization Methods and Software, Volume 6, Issue 3, pp. 161-192 (1995).

[5] M. Berz, “Differential algebraic description of beam dynamics to very high orders”,
Particle Accelerators 24, p. 109 (1989).

1931

