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26.12.5 Convergence of Taylor Maps: Performance of
Lower-Order Polynomial Approximations

We close this section with illustrations of the performances of M
3

and M
5

, third and fifth
order polynomial approximations (including parameter dependence) to the exact map M.
All expansions are made about the point (12.12). Comparison of these performances gives
some feeling for the convergence properties of the Taylor approximation to M.

Performance of M
3

Figure 33 shows the M
3

counterpart to Figure 24 produced using M
8

. Evidently the
qualitative features of the period doubling cascade are the same. Also, we have found that
there is not qualitative agreement if M

2

is used. We conjecture that generically third-order
information is necessary and su�cient to obtain qualitative agreement for a period doubling
cascade arising from what once was a period-one fixed point.

Note also that M
3

does not reproduce the three features near ! = 1.265 seen in Figure
25.8.6 for the exact M and in Figure 24 for M

8

. We have found that these features first
appear for Mn when n = 5. They belong to what was initially a period-three fixed point
for M.

Figure 26.12.33: Partial Feigenbaum diagram for the map M
3

. The black dot marks the
point about which M is expanded to yield M

3

.

Figures 34 and 35 show the M
3

counterparts to Figures 26 and 27 produced using M
8

.
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Evidently there is qualitative agreement. The attractors in Figures 34 and 26 look similar.
And, when enlarged, both show evidence of fractal structure. Compare Figures 35 and 27.

Figure 26.12.34: Limiting values of q1, p1 for the map M
3

when ! = 1.2902. They appear
to lie on a strange attractor.
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Figure 26.12.35: Enlargement of boxed portion of Figure 34 illustrating the beginning of
self-similar fractal structure.
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Performance of M
5

Figure 36 shows theM
5

counterpart to Figure 24 produced usingM
8

. Now there is improved
quantitative agreement as well as qualitative agreement. Also, there are now three features
near ! = 1.265 that resemble those seen in Figures 25.8.6 and 24.

Figure 26.12.36: Partial Feigenbaum diagram for the map M
5

. The black dot marks the
point about which M is expanded to yield M

5

.

Figures 37 and 38 show the M
5

counterparts to Figures 26 and 27 produced using M
8

.
Again there is improved quantitative agreement. We surmise that, for the region of phase
space and ! range displayed, convergence appears to be well underway.
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Figure 26.12.37: Limiting values of q1, p1 for the map M
5

when ! = 1.2902. They appear
to lie on a strange attractor.
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Figure 26.12.38: Enlargement of boxed portion of Figure 37 illustrating the beginning of
self-similar fractal structure.
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26.12.6 Concluding Summary and Discussion

Poincaré analyticity (and its generalization to include parameter dependence) implies that
transfer maps M arising from ordinary di↵erential equations can be expanded as Taylor
series in the initial conditions and also in whatever parameters may be present. Section
10.10 described the complete variational equations, and described how the determination
of these expansions is equivalent to solving the complete variational equations. Chapter 25
provided an overview of the properties of the stroboscopic transfer map M for the Du�ng
equation. The present section described examples of how nth degree approximations Mn to
M (including parameter dependence) could reproduce various features of the exact M. In
particular it illustrated, remarkably, that M

8

produced an infinite period doubling cascade
and apparent strange attractor that closely resembled those of the exact map. It also
illustrated how the accuracy of Mn improves with increasing n.

We have seen that there are situations in which a truncated Taylor map well reproduces
results obtained by the integration of di↵erential equations. This is comforting since the
behavior of polynomial maps, because such maps can easily be evaluated repeatedly, is often
studied in detail with the hope that the behavior of such maps is illustrative of what can
be expected for maps in general, including the maps that arise from integrating di↵erential
equations.

In view of this success, one might wonder if there are situations in which the use of
truncated Taylor maps could replace or at least complement direct numerical integration.
There is, of course, the question of convergence for Taylor series, and the convergence domain
is related to the (generally unknown) singularity structure of the solution to the di↵erential
equation in the complex domain. See Section 35.3. However, if satisfactory approximation
can be illustrated by the comparison of numerical integration results with truncated Taylor
results for representative solutions in some domain, then the use of truncated Taylor maps
to find additional results may be faster than continued numerical integration.

For example, in the case of the Du�ng equation, although the determination of the rel-
evant hr

a(t) of Subsection 10.10.1 requires the simultaneous numerical integration of a large
number of di↵erential equations, these equations need be integrated over only one drive pe-
riod. Once the truncated Taylor series stroboscopic map has been found, its evaluation for
any phase-space point and any parameter value is essentially free. All that is required is the
evaluation of two n-degree polynomials (one for ⇣f

1

and one for ⇣f
2

, the deviation variables
associated with qf and pf , respectively) in three variables (⇣ i

1

, ⇣ i
2

, and ⇣ i
3

). (Again see Sub-
section 10.10.1 for notation.) By contrast, the direct construction of a Feigenbaum diagram
requires the integration of the Du�ng equation for a large number of drive periods and a
large number of parameter values. And, determination of the strange attractor associated
with the Du�ng equation requires the integration of the Du�ng equation over thousands
of drive periods.

Suppose T
2

is the time required to integrate two equations over a drive period. In our
example, it is the time required to integrate the Du�ng pair of di↵erential equations (1.4.32)
over one drive period. Suppose TN

e

is the time required to integrate Ne equations over one
drive period. Let L(m,n) be the number of monomials of degree 0 through n in m variables.
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It is given by the binomial coe�cient

L(m,n) =

✓
m+ n

n

◆
. (26.12.14)

See Section 7.10. When working with m variables through terms of degree n, the number Ne

of di↵erential equations to be integrated to determine the relevant functions hr
a(t) is given

by the relation
Ne = mL(m,n), (26.12.15)

which amounts to
Ne = 3L(3, 8) = 3⇥ 165 = 495 (26.12.16)

in the case of M
8

for the Du�ng equation including parameter dependence. We have found
in our numerical studies that there is the approximate scaling relation

TN
e

' (Ne/2)T2

(26.12.17)

for n  9. That is, the computation time scales with the number of equations to be
integrated. We conclude that in this example the use of M

8

becomes advantageous once
the number of drive periods times the number of parameter values exceeds 495/2 ' 250.

With regard to providing complementary information, it is common practice to integrate
the first degree variational equations in order to establish the linear stability of solutions.
Integration of the higher degree variational equations, including possible parameter depen-
dence, provides information about nonlinear behavior/stability. As examples, such informa-
tion is required for the control of orbits in accelerators and the understanding and control
of aberrations in optical systems.

In conclusion, there are applications for which use of the higher degree variational equa-
tions is advantageous, and the whole subject of the usefulness of truncated Taylor maps
merits continued study.
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26.13 Analytic Properties of Fixed Points and
Eigenvalues

As described in the beginning of Section 24.12, integrating analytic di↵erential equations
can be expected to yield analytic maps. For these maps we can compute fixed points and
the eigenvalues of the linear parts of these maps about their fixed points. What can be said
about the parameter dependence of these fixed points and eigenvalues?

Consider first the behavior of eigenvalues. They are roots of the characteristic polynomial
(3.4.1) when M is the linear part of the map. The coe�cients of this polynomial depend
on the matrix elements of M in an analytic way. See Exercise 3.7.14. Moreover, since M is
determined by integrating the variational equations, we may expect these matrix elements


