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1. Introduction

The goal is to compute the horizontal and vertical amplitude-dependant detunings ∆Qx,y gener-
ated by a general (head-on or long-range, round or flat) beam-beam collision and compare the
result with MadX. The formulae are the same as in a previous report [1]. Some more recent
development can be found in [2] (not yet published, link to be added). An implementation as
Mathematica scripts is also included. In the examples, these scripts are used to reproduce results
similar to the ones in [1], this time for a latest HL-LHC lattice and beam-beam setup (round-beam
optics).

The collision is described by two parameters:

(1) one of either dx or dy – full separation between orbits normalized to corresponding strong-
beam rms size σx or σy (for the LHC, only one of dx,y can be non-zero);

(2) r = σy/σx – sigma-aspect ratio of the strong beam.

The analytic expressions for ∆Qx,y should agree with the detunings found with MadX. These are
denoted with ∆ TUNX, ∆ TUNY and defined as the TUNX, TUNY columns in the tracking output file
dynaptune with subtracted the detuning in absence of beam-beam. The latter is a contribution
of other sources (octupoles etc) and is found in a separate (preceding) run of MadX. Numerical
errors may also interfere.

Same as in [1], some small residual detuning that depends on the crossing angle may be
present: see [1] (page 3): “For each plot, before the comparison is made, tiny tune shifts ∼
5×10−5 still present in the beam-beam free lattice are subtracted from the MadX output “.

For section Results, by choosing a set of weak-beam particle amplitudes ax,ay, such as the
one on Fig 1 (up to 7 σ ), the analytic footprint ∆Qx,y(ax,ay) is plotted together with the one from
tracking.
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Figure 1. Sample range of weak-beam particle amplitudes.

2. Theory

• An expression for the averaged Hamiltonian, the Fourier coefficient Cmk for k = m = 0,
can be found in [2], Eqn (2.6), or in [1], Eqn 10 (top):

C00 =
∫ 1

0

dt
t gr(t)

[
1−Q(x)

0 (t)Q(y)
0 (t)

]
.

Here Q(x)
0 (t),Q(y)

0 (t) depend on the location of the collision (dx,(y),r) and amplitudes
(ax,ay) see the Introduction. In fact the above dependence realises through some mixed
location-amplitudes variables, also called ”bar” variables in [2], see Eqn 2.8.
• The derivatives over ax,y, [1], are

∂C00

∂ax
=−

∫ 1

0

dt
t gr(t)

∂Q(x)
0 (t)

∂ax
Q(y)

0 (t) (2.1)

∂C00

∂ay
=−

∫ 1

0

dt
t gr(t)

∂Q(y)
0 (t)

∂ay
Q(x)

0 (t).

• It is further shown in [1] that the derivatives of Q(x)
0 (t),Q(y)

0 (t) participating in Eqn 2.1 can
be expressed in terms of the first three 2D-Bessel functions Λ0,1,2, see Eqn 1.2 in [2].

Namely, since

Q(z)
0 = e−

t
2 (āz−d̄z)

2
Λ0
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(z = x,y ) one can after some transformations show that

∂Q(z)
0

∂az
= ηz(r, t)e−

t
2 (āz−d̄z)

2
[
− āz

2
[Λ0 +Λ2]+ d̄zΛ1

]
(2.2)

ηx(r, t)≡ rt, ηy(r, t)≡ t/gr(t).

• Sufficiently far from the strong-beam core, approximately when |ax|< 5, see Figure 1, the
generalized two-dimensional Bessel function can be defined with the sums:

Λn(X ,Y ) = e−X−Y
qmax

∑
q=−qmax

In−2q(X) Iq(Y ), (2.3)

where Iq(u) is the modified Bessel functions of the first kind. For large normalized sepa-
rations and amplitudes, large qmax is needed ∼ 30, see also [3]. For large separations and
amplitudes close to the strong beam core, the form as complex integral must be used as the
above sum diverges. The following (real) integral follows from the generating function of
2D-Bessel:

Λn(X ,Y ) =
i−n

2π
e−X−2 Y

∫ 2π

0
e−i n φ−X sinφ+2 Y sin2 φ dφ . (2.4)

• The flatness-parameter appearing under the integral Eqn 2.1 is a function of t and r:

gr(t)≡
√

1+(r2−1) t. (2.5)

• The analytic detunings finally are

∆Qz =
2ξ

az

∂C00

∂az
, where z = x or y (2.6)

and ξ ≡ Nbr0
4πγε

is the beam-beam parameter.
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3. Mathematica implementation

Notebook download: tri-dn-analytic-footprint.nb

• Let ax,y and dx,y be encoded as ax, ay, dx, dy and let also xi= ξ . Then

Code Mathematica 1 for Eqn 2.6

1 dQxy[{ax_ , ay_}] :=

2 - 2 xi {

3 DXC00[dx,dy,r,ax,ay]/ax

4 ,

5 DYC00[dx,dy,r,ax,ay]/ay

6 };

Note that with Mathematica, {a,b} describes the two-dimensional vector (a,b).

• the 2D-Bessel function

Code Mathematica 2 for Eqn 2.3

1 Bess2D[X_ ,Y_ ,n_]:= Sum[

2 Exp[-X]BesselI[n-2q,X]

3 Exp[-Y]BesselI[q,Y]

4 , {q,-qmax ,qmax}]

• The flatness-parameter

Code Mathematica 3 for Eqn 2.5

1 g[t_, r_] := Sqrt[1 + (r^2 - 1) t];

• The analytic detunings Eqn 2.6 depend only on the two derivatives, Eqn 2.1. These are
implemented in Mathematica as the following functions DXC00 and DYC00.

For both scripts shown on the next two pages lines 3-10 are identical and and perform
the same transform to bar variables. Note that the script describing DYC00 is nearly exactly
the same as the one for DXC00. It differs only in line 12 and lines 16–17 (obtained by
simply replacing x with y).

http://beam01.triumf.ca/tri-dn-xyz/tri-dn-analytic-footprint.nb
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Code Mathematica 4 for Eqns 2.1

1 DXC00[dx_ , dy_ , r_, ax_ , ay_] := Module [{},

2 -NIntegrate[

3 axbar = ax r;

4 aybar = ay /g[t, r];

5 dxbar = dx;

6 dybar = dy r/g[t, r];

7 U1x = axbar dxbar ;

8 U2x = - 1/4 axbar^2 ;

9 U1y = aybar dybar ;

10 U2y = - 1/4 aybar ^2;

11

12 r/g[t, r]

13 Exp[(-t/2 (( axbar - dxbar )^2 + (aybar - dybar )^2))]

14 Bess2D[U1y t, U2y t, 0]

15 (

16 -axbar/2 (Bess2D[U1x t, U2x t, 0] + Bess2D[U1x t, U2x t, 2])

17 + dxbar Bess2D[U1x t, U2x t, 1]

18 )

19 , {t, 0, 1}]

20 ]
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Code Mathematica 5 Eqns 2.1 continued

1 DYC00[dx_ , dy_ , r_, ax_ , ay_] := Module [{},

2 -NIntegrate[

3 axbar = ax r;

4 aybar = ay /g[t, r];

5 dxbar = dx;

6 dybar = dy r/g[t, r];

7 U1x = axbar dxbar ;

8 U2x = - 1/4 axbar^2 ;

9 U1y = aybar dybar ;

10 U2y = - 1/4 aybar ^2;

11

12 1/g[t, r]^2

13 Exp[(-t/2 (( axbar - dxbar )^2 + (aybar - dybar )^2))]

14 Bess2D[U1x t, U2x t, 0]

15 (

16 -aybar/2 (Bess2D[U1y t, U2y t, 0] + Bess2D[U1y t, U2y t, 2])

17 + dybar Bess2D[U1y t, U2y t, 1]

18 )

19 , {t, 0, 1}]

20 ]
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4. Results

4.1. Long range, round or flat

A flat l.r.is one for which r 6= 1.
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Figure 2. Small residual detuning in absence of beam-beam (MadX), see Introduction and
[1]. Half crossing angle = 250 µrad, Sextupoles and octupoles are off, ∆p/p = 0. It is
most likely caused by the off-axis orbit excursion within the IR quadrupoles (comment
of Guido Sterbini).
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Figure 3. Comparisons of ∆ TUNX, ∆ TUNY (blue circles) and ∆Qx,y Eqn 2.6 (red triangles)
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4.2. Behaviour near the strong beam core

Figure 4 shows an example for a case where weak-beam particles with ax ∼ 6−7 are too close
to the strong-beam core and hence the sum in Eqn 2.3 diverges. Choosing a higher qmax > 20
does not cure this problem. Here the long-range collision is 12-Left with dx =−12.4. Since the
quantity 7+ 12 ∼ 19 is too large, the complex representation of 2D-Bessel Eqn 2.4 has been
used. The computing computing time is 20 times larger than the one for the sum formula.
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Figure 4. Left: The sum representation of 2D-Bessel Eqn 2.3. Right: The integral Eqn 2.4.
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Figure 5. Identification of the divergent amplitudes near the strong-beam core (magenta
circles). For these the sum Eqn 2.3 becomes infinity and the complex representation of
2D-Bessel Eqn 2.4 is needed

4.3. Other examples

Figure 6. Head-on IP5.
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