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1. Introduction

Tuneshifts (detunings) and structure of the footprint wing are discussed. We consider three cases:

(1) A Long-range beam-beam (bb) collision. The bb optical element is installed in some sam-
ple lattice (weak+strong-beams) so that it resembles an arbitrary collision occurring in
IR5, Left. The full separation is Dx < 0 in the horizontal plane.

(2) An ideal wire-corrector element (aka wire) derived from the bb element (1) by taking
vanishing strong-beam r.m.s. sizes σ str

x,y of the strong beam.
(3) A thin octupole installed in the weak beam at the lattice location corresponding to either

(1) or (2).

One goal is to compare the analytic formulae [3] describing the tuneshift with MadX tracking.
The nearly-horizontal (“H”) wing of the footprint is mostly of interest and its structure at high
amplitudes ax, up to the strong-beam axis (same as the amplitude at which the wire is set). The
full range of amplitudes is then a < ax < amax

x = Dx/σwk
x .

Another is to compare the “mapping transforms” generating the H wing. That is, if the point
transformation from initial-amplitude space to tune space were to be the same for all cases 1-3,
then this would greatly simplify the correction of the bb with wire and the replacement of the
wire with octupole.

For this, assume that the initial-amplitude space is in the vicinity of the separation plane
uniformly populated in radial direction. Then, as we will see, the above similarity is not fulfilled
– the three transforms are in general different and coincide only at small amplitudes:

The transform for bb differs with the one for a wire only at high amplitudes – 2-3 sigma from
the core.

For (3), the b3 of the octupole can be so chosen that the latter becomes equivalent to a hypo-
thetical wire, for which only the 4th order terms in the potential are retained. Thus, in such case,
(2) and (3) produce the same detunings. On the other hand, for a realistic wire, one must also
include the higher terms in the wire potential (16th order turns out to be needed, in order for it
to agree with tracking over almost the entire ax range). Therefore, the H wing generated by a
realistic wire is much more extended in tune space that the one of the equivalent octupole. Thus,
the wire and octupole transforms are identical only at relatively low amplitudes ∼ 3.5 and differ
strongly at higher amplitudes.

The three ranges of agreement can be approximately determined from the presented plots.

2. Lattice and initials for tracking

The tracking procedure is the same as in [1]: a sample-ring lattice (weak beam) is created con-
taining a straight section with a horizontal closed-orbit (CO) bump inside this section. Within
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the bump, we install a thin octupole (K3L, b3 = KRL/6) and, at the same location, a beam-beam
element (full separation Dx, strong-beam sigmas σstr.

x,y , bunch population Nb). The weak-beam
is ultra-relativistic with γ � 1. The CO bump is controlled with a parameter xing and collapses
to zero when xing= 0.

Figure 1. The test-ring lattice section designed to resemble IR5 Left; without CO bump (left) and with a negative bump (right).
The bb location is s =−4 m from the IP, i.e. from the section end.

A simplified uniform initial distribution in amplitude space is used: the initial points are cho-
sen equidistant along two lines in x,y space and hence along similar lines in ax,y, Figure 2, left.
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Figure 2. Left: initials for tracking – the nearly horizontal line is the source for the H wing. Right: octupole footprint.

3. Octupole (3)

A thin octupole is in Mad defined as bb oct:multipole,knl:={0,0,0,K3L}. It correspond to
the kick Hamiltonian (Lie-exponent factor): 1/4!K3L Re[(x+ iy)4 with the coefficient multiply-
ing x4 being 1/24K3L and hence b3 = K3L/6.

We turn the bump off and track the initials Fig 2, left, for 2000 turns. Only the octupole is
present. There is a nearly exact agreement between MadX tracking (dynaptune) and the formula
for octupole detunings

3b3

4
(β 2

x Jx−2βxJxJy) and x↔ y (3.1)

(βx,y ≡ β wk
x,y ) as this is seen on Fig 3 (H wing only).
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Since Jx =
a2

x
2 ε and ∆Qx is linear in ∼ Jx,y, the wings are less populated at higher amplitudes

(spacing between points increasing quadratically with amplitude).
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Figure 3. Octupole H wing: agreement between analytic tuneshift formula with tracking on either action jx or amplitude (ax) axes.

4. Beam-beam and “wire as beam-beam”

The horizontal/vertical analytic detunings are given by these derivatives of the averaged (over
phases) beam-beam Hamiltonian:

∆Qz(ax,ay) =
2ξ

az

∂ < Hbb >φx,y

∂az
, (4.2)

<>φx,y ≡
1

4π2

∫∫ 2π

0
dφxdφy

where z = x,y and ξ ≡ Nbr0
4πγε

is the beam-beam parameter. Assume that the 2D-Bessel function
has been encoded (in, say, Mathematica or Python):

In(u1,u2) ≡
∞

∑
q=−∞

In−2q(u1)Iq(u2) = (4.3)

=
i−n

2π
e−u2

∫ 2π

0
e−i n φ−u1 sinφ+2 u2 sin2 φ dφ .

Here ∞ is replaced by qmax∼ 30−40. Then ∆Qz can be computed as an integral over a 2D-Bessel
kernel. It may be:

– a t-integral derived and used in [2];
– a path integral in ξ parametrizaton [3] – this is Eq. 4.5 below;
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– a regular (not a path-) integral in ξ parametrizaton [3] – these are Eqns. 4.7, 4.8 below.
The plan is to use the ξ -integral forms (last two) as they can describe both the case of a beam-

beam (1) and of an ideal wire (2). Besides amplitudes ax,y, these forms depend on the initial
slopes of the integration path, see [3], and the flatness parameter r:

ψx ≡
dx

rax
; ψy ≡

ay

rax
; r ≡

σ str
y

σ str
x

. (4.4)

Here dx =
Dx
σ str

x
. Thus, only the strong-beam lattice parameters are relevant. For an exactly asym-

metric weak and strong beams at this location, one has:

σ
wk
x,y = σ

str
y,x

Then ψx and r can be expressed in terms of weak-beam parameters:

ψx =
Dx

σwk
x ax

, r =
σwk

x

σwk
y

,

where ψx now has the meaning of (inverted) distance of the particle to the strong-beam core.
The path-integral form is:

∆Qz(ax,ay;dx,r) =−
2
a2

x

∫ rax

0
ξ ηz Tz dξ (4.5)

Tx = eUx
2+Ux

3+Uy
2+Uy

3 I0(U
y
1 ,U

y
2 )

(
I0(Ux

1 ,U
x
2 )+ I2(Ux

1 ,U
x
2 )+

Ux
1

2Ux
2

I1(Ux
1 ,U

x
2 )

)
Ty = Tx with x↔ y,

where

Ux
1 = ψxξ

2, Ux
2 =−1

4
ξ

2, Ux
3 =−ψ2

x ξ 2

2
,

Uy
2 =−

ψ2
y ξ 2

4g2
r
, Uy

2 = 0, Uy
3 = 0;

ηx ≡
1
gr
, ηy ≡

1
r2g3

r
;

gr = gr(ξ ,ax) =

√
(r2−1)ξ 2/(rax)

2 +1. (4.6)

This can be rewritten as regular integrals:

∆Qx(ax,ay;dx,r) =

=− 2
a2

x

∫ rax

0

ξ

gr
exp

[
−ξ 2

4

(
1+2ψ

2
x +

ψ2
y

g2
r

)]
× [I0 I0 + I2 I0−2ψxI1 I0] dξ (4.7)

∆Qy(ax,ay;dx,r) =

=− 2
r2a2

x

∫ rax

0

ξ

g3
r

exp

[
−ξ 2

4

(
1+2ψ

2
x +

ψ2
y

g2
r

)]
× [I0 I0 + I0 I2−2ψxI0 I1] dξ , (4.8)
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where:

Im Ik ≡ Im(ψxξ
2,−1

4
ξ

2) Ik(0,−
ψ2

y ξ 2

4g2
r
) (4.9)

m,k = 0,1,2, and gr was defined in Eq. 4.6.
An ideal wire can be described as a long-range bb collision with vanishing rms size of the

strong beam (“wire-as-bb”). Let us scale down, i.e. divide, both σ str
x,y by the same factor fw ≥ 1.

Then either of the above ξ -integral forms can describe the case of a beam-beam (1), by taking
fw = 1, or an ideal wire (2), by taking fw large, say ∼ 100. Thus, the ideal-wire tuneshifts are:

∆Qw
z = f 2

w ∆Qz( fwax, fway; fwdx,r), fw = large, (4.10)

and the bb case follows from here for fw = 1. The real-space full separation Dx now plays the
role of a physical distance of the wire to the weak-beam axis.

Notice that after the sigma-scaling:

• according to Eq. 4.4, the slopes ψx,y remain the same;
• according to Eq. 4.6, gr can be, with an excellent accuracy, replaced with unity.
• the upper bound on integration rax can be replaced with infinity – a “full escape” from the

strong-beam core, [3].
The result from the tracking test is shown on Figure 4. Here gr = 1. The same initials are

used as for the octupole, i.e. Fig 1, left. The only disagreement is at the last point of the H-wing
generated by wire, i.e amplitude ax = amax

x . Tracking has failed at this point.

bb, MadX bb, analytic (fw=1)
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Figure 4. Agreement between MadX and the analytic detunings Eq. 4.10 for beam-beam, fw = 1 (left plot) and ideal wire, fw = 100
(right plot). The ax,y are as on Fig 1, left. Here there is no correction for zero-amplitude tune and tune-shifts are normalized to the bb
parameter, in this case ξ = 0.2.
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Figure 5. Same as Fig 4, i.e. agreement between MadX and the analytic detunings Eq. 4.10. Here for a new set of initial amplitudes
(top)

On Figure 5, the maximum amplitude is extended up to 8σ , i.e. past the strong beam core
while preserving the step in amplitude. As it happens, there is no initial starting amplitude that is
exactly on the strong-beam core. Therefore no large discrepancies are seen between tracking and
formula Eq. 4.10. Also the set of initial amplitudes has been appended with ones near diagonal
ax = ay, and a smaller fw is used describing the wire: fw = 20 instead of 100.

5. Wire detuning derived from expanded potential

There is an alternative way of computing the wire detuning that produces the same result as
Eq. 4.10 above. Recall that, to derive Eq. 4.10, we substituted vanishing r.m.s. beam sizes in the
beam-beam tuneshifts. This could have been done from the start, i.e. in the original beam-beam
Hamiltonian. This result [3] is an expression for the ideal-wire potential −Hw (also one of a thin
pencil strong beam). This ideal-wire potential, [3], is simply a logarithm:

−Hw =− ln
(
(Dx + x)2 + y2). (5.11)

According to Eq. 4.2, one can derive the wire detuning by averaging this expression over phases:

∆Qw
z (ax,ay) =

2ξ

az

∂ < Hw >φx,y

∂az
, . (5.12)
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The logarithm, with subtracted its quadratic terms in x,y, is first expanded in power series to
order Ntaylor, where x,y are the ones describing the unperturbed trajectory:

ln
(
(Dx + x)2 + y2)− −x2 + y2

D2
x

=

Ntaylor

∑
m,k

amkxmyk (5.13)

x =
√

2β wk
x Jx sinφx y =

√
2β wk

y Jy sinφy

and averaging over phases is performed with Mathematica.
The tracking test (MadX dynaptune), Figure 6, is performed only for the near-horizontal H

wing. For the Taylor-expansion tune-shift to agree with tracking for as large ax as possible, one
needs to take Ntaylor ≥ 16.ax ∼ amax

x . A Taylor expansion of any order however would diverge
for ax taken exactly on the strong-beam core. Finally, in this comparison, the linear terms in the
potential have been subtracted, see above. Hence the tune-shifts vanish at the origin ax,y = 0 and
hence, before tracking, the ring tunes need be matched to the unperturbed ones, in absence of
wire.
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Figure 6. Wire H wing: verification of the detuning-via-Taylor method Eq. 5.12 with tracking. The wire detuning (same as the
H wing on Figure 4, right) is compared with the result from Eq. 5.12 for two maximum orders Ntaylor = 4 and Ntaylor = 16. can
account for the last point, see the text.

6. Wire as octupole

Let bEQUIV3 be the equivalent octupole b3 produced by the ideal wire, i.e. for a wire-potential
expansion with Ntaylor = 4. The tune-shifts are:
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3bEQUIV3
8π

(β 2
x Jx−2βxJxJy) and x↔ y (6.14)

bEQUIV3 =
Nbr0

γ

2
D4

x
(6.15)

Figure 7 compares ∆Qx for the H wing for three cases: equivalent-octupole tracking, the analytic
formula, and the realistic wire (order 16). Evidently, the higher order terms Ntaylor > 4 in the
wire-potential expansion cause additional tune-shift at high amplitudes. Clearly, the wire and oc-
tupole tune-mapping transforms are identical up to amplitudes∼ 3.5 (in σwk

x ) and differ strongly
at higher amplitudes.
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Figure 7. Comparison between the “wire-as-octupole” model and realistic wire in terms of horizontal amplitude (top), or action
(bottom).

7. All three cases – footprint

We are now in a position to compare the three footprints a bb element, an ideal-wire, and a
thin octupole, whose strength is equivalent to the octupole terms in the expansion of the wire-
potential. The result is shown on Figure 8.
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Figure 8. Footprints for back-to-back installed: bb, wire and equivalent octupole. The initial amplitudes are as on Figure 2, left.

8. Summary

Analytic formulas for the tuneshift of a long-range bb and ideal wire were presented.
In a test lattice, the ideal wire was installed back-to-back with the long-range bb effectively

replacing the strong beam at this location, i.e. same full separation and effective charge. Also a
case when the wire is replaced with a thin octupole with strength equivalent to the wire octupole
component was considered.

The analytic formulas were found to agree with MadX tracking for all three cases.
Also the footrint wing created the collision plane was compared Fig 8 for all three cases.
We found that, with full separation 7.3 sigma, the wire would be able to compensate the tune-

shift generated by the bb up to 5.5−6 sigma since the wing structure is nearly the same.
It was found that the ability of the octupole to mimic this compensating action of the wire

is more limited. This was explained with the absence of higher order terms > 4 in the octupole
potential.
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